Characteristics and sources of *Cyclospora cayetanensis*

Main microbial characteristics

Cyclospora cayetanensis is the causative agent of cyclosporiasis. It is a unicellular parasite belonging to the Coccidia (Coccidiasina) subclass of the phylum *Apicomplexa*.

C. cayetanensis is an intracellular parasite whose monoxenous\(^1\) biological cycle has not yet been fully characterised. The cycle begins with the ingestion of mature sporulated oocysts, each one containing two sporocysts which each contain in their turn two infecting sporozoites. When exposed to gastric acid, the sporozoites are liberated into the intestinal lumen and penetrate the enterocytes of the small intestine. Type I and II meronts are then produced through asexual reproduction. The meronts can then evolve to a sexual stage, with the formation of male gametes (microgametogony) or female gametes (macrogametogony). Fusion of the gametes produces an immature oocyst (8 to 10 µm) which is excreted in the faeces when the enterocyte dies. The parasite only becomes infectious after maturing in the external environment, depending upon the temperature (one to two weeks if the temperature is between 23 and 27°C), once the oocyst reaches its sporulated stage.

The biological cycle of the parasite is summed up in [Figure 1](#).

Sources of the hazard

There are currently no known animal reservoirs for this parasite. The only reservoir appears to be humans. The main environmental sources of the hazard, via the faecal elimination of oocysts, are water and plants in contact with soil or irrigated through spraying.

Transmission routes

Transmission of the parasite is by the faecal-oral route, through food or water contaminated by oocysts from human faecal matter. The disease is therefore most often contracted through ingesting contaminated water or raw vegetables or plants.

Cyclospora is not directly infectious when it is excreted in the faeces of an infected individual, since the oocysts are excreted in their immature form. Direct transmission from one individual to another is therefore impossible.

\(^1\) Parasite life cycle involving a single host.

Figure 1: Biological life cycle (based on a diagram presented by the CDC) of *Cyclospora cayetanensis*

The role of free-living nematodes or other mechanical vectors (filter-feeding shellfish, insects, rotifers) in the contamination of food crops is also worth exploring.

Recommendations for primary production

- Compliance with good hygiene practices during growing and harvesting, especially in endemic countries which produce plant products and export them to Europe.
- Strict adherence to good farming practices in order to limit the risk of contaminating raw materials (ready-to-eat raw fruits and vegetables) through spray irrigation water.
- Treatment of wastewater and banning human fertiliser.
Susceptible population groups\(^{(2)}\): immunodepressed individuals (especially AIDS patients) can develop serious, prolonged diarrhoea leading to severe dehydration which can also cause cachexia. Extra-intestinal infections (cholangitis) have been described in AIDS patients, but no fatal cases due to cyclosporiasis have been declared.

Dose-effect relationships\(^{(3)}\)

The epidemiological data suggests that approximately ten oocysts are enough to bring on the disease.

Epidemiology

Surveillance system

In France, only clustered cases of cyclosporiasis manifesting as foodborne illness outbreaks are subject to mandatory reporting. Sporadic cases are not reported, but since 2006 a survey-based annual report of the number of cases diagnosed by the parasitology laboratories of the Crypto-Anofel network (InVS network) has been issued.

In the USA, confirmed cases have been reported to the Center for Disease Control and Prevention (CDC) since 1997. They have been reported to the Public Health Agency of Canada (PHAC) since 2000.

Prevalence

Although it has a cosmopolitan distribution, cyclosporiasis is essentially found in the inter-tropical geographical area (where the environmental conditions are favourable to the parasite) with a higher prevalence in certain countries such as Nepal, Peru, Guatemala, Mexico and Haiti. In these countries, the overall prevalence is from 2.3% to 9.2% in immunocompetent subjects and 3.8% to 11.3% in AIDS patients. In these endemic areas, cases are frequently distributed seasonally, often in relation to the rainy season. Epidemiological studies have also found that the majority of infected subjects are children, and that asymptomatic carriage is common. The prevalence of *Cyclospora* infection in industrialised countries is only partially known. In the USA, from 1997 to 2008, the overall rate of incidence went from 0.01 out of 100,000 people in 1997 to 0.07 in 2002; excluding epidemic cases, the observed cases mainly concerned migrants and travellers (destinations such as Mexico, Guatemala and Peru were often reported).

In France, since 2006 about approximately ten sporadic cases of cyclosporiasis have been reported by the national Crypto-Anofel network each year, mainly imported cases.

Outbreaks

Since 1990, about sixty foodborne cyclosporiasis epidemics (and three waterborne ones) have been reported, most in the US (including one which occurred from mid-June 2013 to August 2013 with 643 cases reported over 25 states) and in Canada (from 3 to 1475 cases). When the source of contamination could be identified through an epidemiological survey, the incriminated foods were essentially fruits and vegetables from the endemic area, in particular raspberries, basil, lettuce and snow peas.

Role of food

Main foods to consider

Water is the main vector of food contamination. Fruits and vegetables can be contaminated by both soil and waterborne oocysts (crop irrigation water). Varieties with a large surface area (leafy vegetables for example) or with a shape and texture promoting the trapping or attachment of oocysts (raspberries for example) are more likely to be contaminated. These foods present a risk if they are not thoroughly washed or cooked.

Retention and inactivation treatments in industrial environments

Retention treatments

The most commonly used retention treatments for treating water are flocculation, decantation and filtration. However, due a lack of *in vivo* and *in vitro* models, no serious studies have been able to be conducted.
Table 2. Physical and chemical treatments

<table>
<thead>
<tr>
<th>Inactivation treatment</th>
<th>Chemical treatments</th>
<th>Matrix</th>
<th>Effectiveness of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine dioxide gas (4.1 mg/L) for 20 min</td>
<td></td>
<td>lettuce leaves and basil</td>
<td>Ineffective</td>
</tr>
<tr>
<td>Chlorine (concentrations commonly used for the public water supply)</td>
<td></td>
<td>water</td>
<td>Ineffective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical treatments</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration/ ambient temperature</td>
<td></td>
<td>/</td>
<td>Ineffective</td>
</tr>
<tr>
<td>Freezing</td>
<td>-15°C, 24 h</td>
<td>milk</td>
<td>Ineffective</td>
</tr>
<tr>
<td></td>
<td>-15°C, 48 h</td>
<td>milk</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>-20°C, 48h</td>
<td>basil and water</td>
<td>Ineffective</td>
</tr>
<tr>
<td></td>
<td>-20°C, 96 h</td>
<td>basil and water</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>-70°C, 1 h</td>
<td>basil and water</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>50°C, 1 h</td>
<td>basil and water</td>
<td>Ineffective</td>
</tr>
<tr>
<td>Cooking/reheating</td>
<td>70°C, 15 min</td>
<td>basil and water</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>Microwaves – 45 sec (temperature reached in centre: 96°C)</td>
<td>Aqueous solution</td>
<td>Partial destruction</td>
</tr>
<tr>
<td></td>
<td>High pressure*</td>
<td>basil and raspberries</td>
<td>6 log10 reduction</td>
</tr>
<tr>
<td></td>
<td>550 MP, 40°C, 2 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionisation*</td>
<td>1 kGy</td>
<td>raspberries</td>
<td>2.8 log10 reduction</td>
</tr>
<tr>
<td>UV*</td>
<td>261 mW/cm²</td>
<td>basil</td>
<td>4 log10 reduction</td>
</tr>
<tr>
<td></td>
<td>Continual treatment at 254 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* model used: Eimeria acervulina, a Coccidium close to Cyclospora cayetanensis

Inactivation treatments
For the same reasons, the resistance/susceptibility properties of Cyclospora oocysts to the physical and/or chemical treatments commonly used as inactivation processes for micro-organisms are poorly understood.

The few existing studies use the sporulation ability of oocysts (sporulation test) as a test of viability for Cyclospora cayetanensis. Treatments that do not affect the ability of oocysts to sporulate are considered to be ineffective.

Monitoring in food
In Europe and in the rest of the world, there are no regulatory criteria regarding Cyclospora cayetanensis in food.

Screening in water
There is no standardised method for detecting Cyclospora cayetanensis oocysts in water. However, due to the size of oocysts, certain authors use the filtration-based concentration methods described for Giardia cysts and Cryptosporidium oocysts (EPA method 1623 (2005), Drinking Water Inspectorate (2005), ISO 15553 (2006) et NF T90-455 (2001)). Identification is based on microscope observations and molecular assays (nested PCR and sequencing or real-time PCR).

Screening in foods
While the FDA has described methods for isolating Cyclospora oocysts from leafy vegetables (lettuce, aromatic herbs), berries (raspberries), and beverages (juice, cider, milk, water), their effectiveness is not known.

Recommendations for operators
- Good hygiene practices should be adhered to during the transformation of basic ingredients and potable water used in processing.
- Kitchen personnel and all other individuals who may be called on to handle foodstuffs should be made aware of the faecal-oral route risks and of the importance of following strict hygiene measures (through hand washing). This is especially important if the food is intended to be eaten raw or lightly cooked.
- Cyclospora should be taken into account in the hazard analysis by operators concerned with plant-based foods which are immersed in, or spray-irrigated with, potentially contaminated water (especially foods coming from endemic regions). Appropriate measures should be taken accordingly.

Domestic hygiene

Recommendations to consumers
- Basic rules of hygiene should be followed, hands washed thoroughly, especially after using the lavatory, and kitchen utensils and countertops washed, especially before handling food.
- Foods that may be contaminated by Cyclospora oocysts (fruits and vegetables intended to be eaten raw) should be washed thoroughly with potable water.
- Foods should be cooked if proper washing conditions cannot be applied (no potable water available, or water from an unsure source), especially in endemic regions.
- In endemic regions, it is recommended to drink only bottled spring or mineral water from sealed bottles. If this is not possible, boil water for 10 minutes or treat it using a microfiltration system before drinking.

References and links

General references

Useful links
- ANSES: www.anses.fr
- CDC: http://www.cdc.gov/parasites/cyclosporiasis/
- CDC-DPDx: http://www.dpd.cdc.gov/dpdx/HTML/Cyclosporiasis.htm
- FDA: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm073638.htm
- National Reference Laboratory (NRL) for foodborne parasites, excluding Echinococcus sp.: ANSES Laboratory for Animal Health – Maisons-Alfort – France
- European Union Reference Laboratory for parasites: Istituto Superiore di Sanità (ISS) I-00161, Rome – Italy (http://www.iss.it/crlp/index.php)