

Physicochemical characterisation of MNs and exposure media

WP4 Leader Keld Alstrup Jensen The National Research Centre for the Working Environment

NANOGENOTOX – Final Conference – 22 February, 2013

Main tasks

- To test and develop suitable methods and standard operation procedures (SOPs) for analysis and characterisation MN's and dispersions dispersions thereof
- To determine the intrinsic characteristics of nanomaterials selected for toxicological studies
- To test the homogeneity of the MN batches distributed
- Develop, test and verify highly suitable MN dispersion protocols to be used in toxicity testing

- New procedures for establishment of nanoparticle dispersions was established using either a one-step direct stabilization by BSA or a three-step pH-BSA-pH stabilization (NRCWE and CEA + validation partners)
- Procedures were developed and tested for determination of primary and aggregate/agglomerate size-distribution using TEM (CODA-CERVA, IMC-BAS and INRS)
- Procedures for determination of average primary and aggregate size, number of primaries in aggregates and surface area in both powders and dispersions using SAXS were demonstrated (CEA)
- Procedure for identification and quantification of organic coatings or associated organic matter was established (NRCWE)
- Procedure for determination of dustiness using a Vortex Shaker was established (INRS)
- Two procedures were established to investigate the 24-hour hydrochemical reactivity and dissolution/biodurability of MN in various mediums. (NRCWE)

Dispersion of the test materials for in vivo and in vitro toxicological tests

NANOGENOTOX – Final Conference – 22 February, 2013

The NANOGENOTOX strategy for **MN-dispersion**

One dispersion protocol for all test systems!

Requirement

High concentration in a "physiologically" acceptable medium Applicable for both hydrophilic and hydrophobic MN's

2.56 mg/ml MN Stock Suspension

(instilled, diluted or dosed into specific test mediums)

Different Exposure Systems

NANOGEN-TOX

Grant agreement number 2009 21 01

INOTOX – Final Conference – 22 February, 2013

Co-funded by the Health Programme of the European Union

Risk Assessment of Engineered NanoParticles

Selection of BSA concentration

Grant agreement number 2009 21 01

NM-400 (CNT) and NM-101 (TiO₂)

2.56 mg/ml in 0.05% w/v (Bovine) Serum Albumin (0.5 % EtOH pre-wetting for all)

Grant agreement number 2009 21 01

NANOGEN
 TOX

NANOGENTOX

- 22 February, 2013

Primary physico-chemical characterization of NANOGENOTOX MN samples

Selected Major Conclusions

NANOGENOTOX – Final Conference – 22 February, 2013

- TiO₂ (size only valid until 100 nm; size may vary with method of analysis; IMC-BAS XRD-size data are systematically smaller than LNE and NRCWE XRD-size data)
- SAS (generally amorphous, but Na₂SO₄ and AIO(OH) were observed in several samples by NRCWE. The type of <u>sample mount</u> and <u>sample size</u> may determine Limit Of Detection: Large AI-holder vs. Quartz-plate)
- CNT (A primary XRD peak can be observed, but it can probably not be used for reliable sizing of CNT diameter/wall thickness)

NANOGENETOX Relations between XRD-sizes

Grant agreement number 2009 21 01

NANOGENOTOX – Final Conference – 22 February, 2013

- Results from analysis of primary particle sizes showed general agreement between the different procedures.
 - Harmonization of reported dimensions is needed (e.g, Feret dim, PSD).
 - As for XRD, maybe greater variability with increasing particle size?
 - Primary sizes of our MN had too little variation for general comparison
- Challenges remain for complex morphologies (aggregates and high-aspect ratio nanomaterials!

Co-funded by the Health Programme of the European Union

NANOGENETOX Comparison between laboratories

Grant agreement number 2009 21 01

NANOGENOTOX – Final Conference – 22 February, 2013

NANOGENOTOX – Final Conference – 22 February, 2013

Comparison between SAXS and TEM

Grant agreement number 2009 21 01

NANOGENTOX

NANOGENOTOX – Final Conference – 22 February, 2013

"Aggregate" size by SAXS and DLS

Grant agreement number 2009 21 01

Primary Dimensions of CNT

Grant agreement number 2009 21 01

Lab	Thickness SD (nm)	Geodesic length SD (nm)	< 100 nm (%)	Aspect ratio*	n
NM-400 #1	11 ± 3	846 ± 446	100%	79 ± 50	20
NM-400 #2	16 <u>.2 + 3.5</u>				36
NM-401 #1	67 ± 24	4048 ± 2371	90%	66 ± 46	43
NM-401 #2	61.4 <u>+</u> 24.4				358
NM-402 #1	11 ± 3	1372 ± 836	100%	125 ± 66	20
NM-402 #2	14.3 <u>+</u> 2.7				135
<u>NM-403 #1</u>	<u>12 ± 7</u>	<u>443 ± 22</u> 2	100%	42 ± 29	50
NRCWE-006 #1	74 ± 28	5730 ± 3674	87%	85±63	56
NRCWE-007 #1	17 ±7	465 ± 340	100%	30 ± 22	50

NANOGENITOX Primary Dimensions of CNT

Grant agreement number 2009 21 01

NANOGENOTOX – Final Conference – 22 February, 2013

Specific Surface Area (SSA)

Grant agreement number 2009 21 01

NANOGENOTOX

NANOGENOTOX – Final Conference – 22 February, 2013

Differences between BET and SAXS data may in part be due to challenges in mathematical procedures for data-treatment and material properties – e.g., inner and nano-porosity

Chemical composition

Grant agreement number 2009 21 01

Strategy for the analysis

- Mass-loss in TGA
 - organic coating (or associated organics) in TiO_2 and SAS
 - incombustible residual in carbon-based MN
- Elemental analysis
 - general composition
 - catalysts
 - impurities
- Organic chemical analysis of MN with significant weight-loss
 - Organic coatings and functionalizations
 - Associated organic matter

 Very useful for identification of MN with potential presence of "organic" coatings (or associated "organics")

NM101, NM103, NM104, NM204

- Very useful for analyzing the homogeneity (and apparent quality) of CNT
 - NM400, NM402 and NRCWE007 apeear to be inhomogeneous (> 10 – 15 mg)
- Very useful for determination of total mass of inorganic compounds in a combustable material such as CNT
 - □ CNT contained 3 18 wt% impurities (catalyst particles)

Elemental composition (EDS, ICP-MS, ICP-OES)

- SEM EDS, ICP-MS and ICP-OES were conducted where SEM EDS is semiquantitative analysis of samples pressed into pellets
 - TiO₂: general agreement in the major elemental impurities / coatings (AI and S), but Fe (EDS) were not detected in ICP-OES analyses.
 - SAS: was analysed in general agreement with major elemental impurities (Na, Ca, S, Al) between EDS and ICP-OES
 - CNT: The highest catalyst concentrations were detected by TGA and SEM EDS. Full recovery was not achieved in ICP-MS and ICP-OES analysis when using EDS and TGA analyses as benchmark data. However, there was general agreement in the detected main elements.

Apparent problems in getting agreement in quantitative elemental analysis of CNT is due to different extraction procedures

NANOGENOTOX – Final Conference – 22 February, 2013

Dispersion protocol

- Generic protocol developed d_H comparable to the primary aggregate sizes.
- Stabilities of at least 1 hour for almost all dispersions allowing sufficient time for exposure.

Primary physicochemical characterization methods

- XRD sizes are method-dependent and uncertainty increases at the lower and upper end of the nano-range - harmonization and validation may be required.
- TEM and DLS sizes generally comparable across laboratories. BUT size-range of tested MN was too narrow to investigate the upper and lower limit of the nano-range.
- SAXS is a promising tool for SSA and size analysis of both primary particles and aggregates
- **TGA** useful for ID of MN with associated "organics" and residual catalysts in CNT.
- Elemental analysis using digestion procedures should be improved.
- Dustiness tests are useful for assessment of emission potentials and dust characteristics

The Phys-chem characteristics of the MNs

- TiO₂ and SAS MN are releatively homogenous MN, but some SAS contain minor Na₂SO₄ and AIO(OH) impurities (not homogeneously distributed).
- The CNT were chemically and structurally inhomogeneous with 3-18 wt% catalyst (>10-15 mg needed for TGA).
- Wide distributions were found in CNT tube diameters. Length measurements are uncertain.

Thanks for listening!

- National Research Centre for the Working Environment (NRCWE), Denmark
 Keld Alstrup Jensen (WP-leader)
- Vetinary and Agrochemical Research Centre (CODA-CERVA), Belgium
 - Jan Mast
- Commissariat a l'Energie Atomique (CEA), France
 - Olivier Spalla
- Institut National de Rescherche et de Securite (INRS), France
 Olivier Witschger
- Central Laboratory of Mineralogy and Crystallography (CLMC), Bulgaria
 Boris Shivachev
- Collaborating Partners
 - Laboratoire National de Métrologie et d'Essais (LNE), France
 - Joint Research Centre (JRC, Ispra), Brussels
 - Duke University, USA

NANOGENOTOX

WP 4: Physicochemical Characterisation of MNs and Exposure Media

Statement by M. A. Bader, BAM, Berlin

NANOGENOTOX – Final Conference – 22 February, 2013

Statement on WP 4 Outcome

- Detailed and unique SOP for nanomaterial dispersion to be used in toxicity testing has been provided.
- Different methods to characterise large volume batches of nanomaterial and dispersions thereof have been applied, useful and detailed SOPs have been provided recognising state-of-the-art.
- Nanomaterial characterisation, availability of stable and homogeneous dispersion and characterisation thereof is key issue: The importance of phys-chem characterisation is recognised, WP objectives were achieved, outcome is relevant.
- Restrictions: Choice of materials (TiO₂, SiO₂, CNT), dispersion (BSA), equipment (participating labs). The question of transferability of SOPs might arise.

Recommendations / Input

- Many different SOPs and guidelines are around: OECD, ISO, NIST, JRC, NANOMMUNE, ...
 Where and how do NANOGENOTOX results fit in?
 NANOGENOTOX guidance document suitable?
- Industry and regulatory agencies rely on standards: Your input in ISO, CEN and national standardisation committees is strongly recommended.
- Development/application of certified nanoscale reference materials and validation of methods seem necessary to overcome discrepancies in results that are still observed.
- Some refinements in specific SOPs for material characterisation are suggested.

