

WP7 Toxicokinetics

Vim DE JONG National Institute for Public Health and the Environment - RIVM Discussant : Elias FATTAL - University of Paris Sur

Wim H. De Jong RIVM (National Institute for Public Health and the Environment) Bilthoven, The Netherlands

NANOGENOTOX – Final conference – 22 February 2013

- Determine feasible dose for in vivo studies
 - Toxicokinetics: to obtain organ levels above detection levels
 - Genotoxicity: highest dose possible without severe toxicity?
- Determine relevant target organs for possible genotoxic damage based on tissue distribution of MN.
- Determine time points for in vivo tissue sampling for in vivo studies.

MN investigated TiO₂, SAS (SiO₂), MWCNT

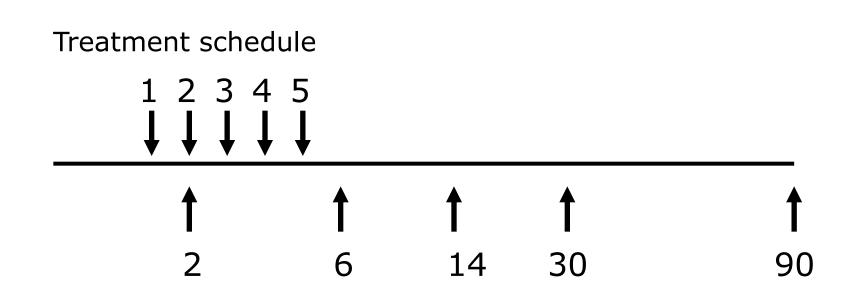
 For Ti determination an evaluation was done in 4 different laboratories with different ICP-MS equipment

Toxicology

- Dose range finding (identify tolerable dose)
 - IV and oral

Toxicokinetics

- □ Tissue distribution, kinetics after single dose (1x)
- Tissue distribution after repeated dose (5x)
- IV and oral


Toxicokinetic studies, nanomaterials

Grant agreement number 2009 21 01

Nanomaterials		Route	Partner
	NM-100	IV	RIVM
	NM-101	oral	NRCWE
T	NM-102	oral, IV	NRCWE, RIVM
TiO ₂	NM-103	oral, IV	NRCWE, RIVM
	NM-104	oral, IV	NRCWE, RIVM
	NM-105	oral, IV	NRCWE, IMB-BAS
SAS	NM-200	oral, IV	ISS
SAS	NM-203	oral, IV	155
	NM-400	oral, IV	
CNTs	NM-401	oral, IV	CEA
	NM-402	oral, IV	
	NRCWE-006	oral, IV	

Blood was collected at (pretreatment, and on days 1 and 5) Blood and organs were collected at days 2-6-14-30-90

Oral and IV administration of TiO₂

NANOGENOTOX – Final Conference – 22 February 2013

Oral administration of TiO₂

Grant agreement number 2009 21 01

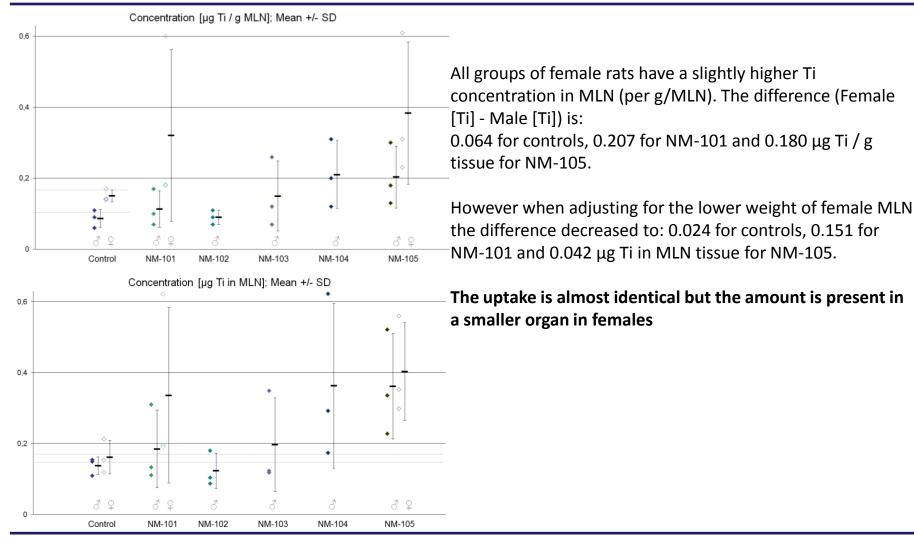
NANOGEN

TOX

		Liver			Spleen		
		Animal 1	Animal 2	Animal 3	Animal 1	Animal 2	Animal 3
Control	5 x 0 mg 👌	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
NM-101	5 x 2.304 mg 👌	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
NM-102	5 x 2.304 mg 👌	< 0.03	<u>0,03</u>	< 0.03	< 0.03	< 0.03	< 0.03
NM-103	5 x 2.304 mg 👌	0,08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
NM-104	5 x 2.304 mg 👌	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
NM-105	5 x 2.304 mg 👌	< 0.03	< 0.03	< 0.03	< 0.03	0,12	< 0.03
Control	5 x 0 mg	< 0.03	< 0.03	<u>0.03</u>	< 0.03	< 0.03	<u>0,03</u>
NM-101	5 x 2.304 mg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
NM-105	5 x 2.304 mg ♀	< 0.03	< 0.03	< 0.03	0,21	< 0.03	0,13

All concentration listed in [µg Ti / g tissue]

All liver and spleen tissue samples contained very low amounts of Ti.


Concentration were close to Limit of Detection (n=4), at Limit of Detection (n=3) or below the Limit of Detection (n=47) of 0.03 µg Ti / g tissue.

Of the 4 samples with concentrations above the LOD, 3 was in spleens of NM-105 exposed rats.

NANOGENOTOX Oral administration of TiO₂ Uptake in Mesenteric Lymph Node

Grant agreement number 2009 21 01

NANOGENOTOX Oral administration of TiO₂

Translocation to mesenteric lymph nodes

Mean Ti-values for controls and for the MN leading to the highest concentration in MLN.

rats (NM-104):

 $Controls MLN \qquad : 0.137 \ \mu g$

NM-104 exposed rats $$: 0.363 μg

Difference: 0.226 μ g Total exposure: 11520 μ g.

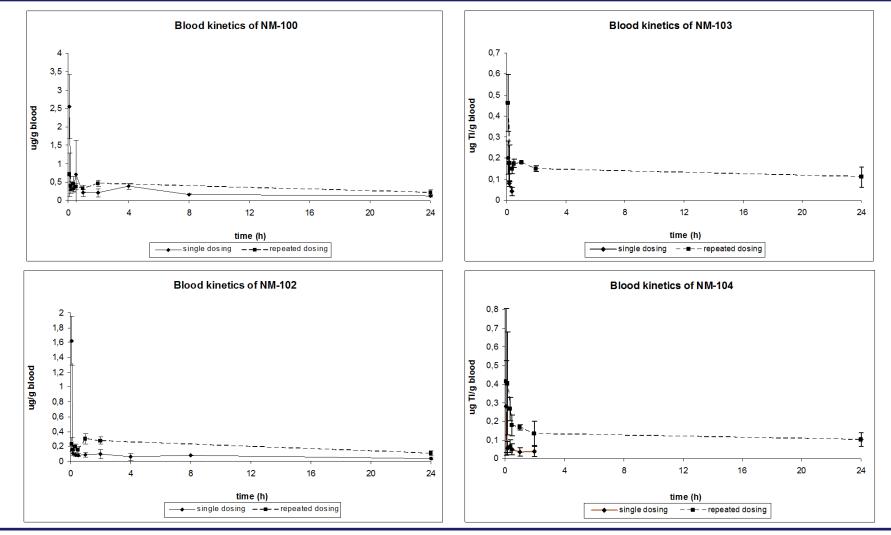
This means that (0.226/11520*100) 0.002% were translocated to the mesenteric lymph nodes.

rats (NM-105): Controls MLN : 0.162 μg

NM-105 exposed rats : 0.403 μg Difference: 0.241 μg Total exposure: 11520 μg.

This means that (0.241/11520*100) **0.002%** were translocated to the mesenteria.

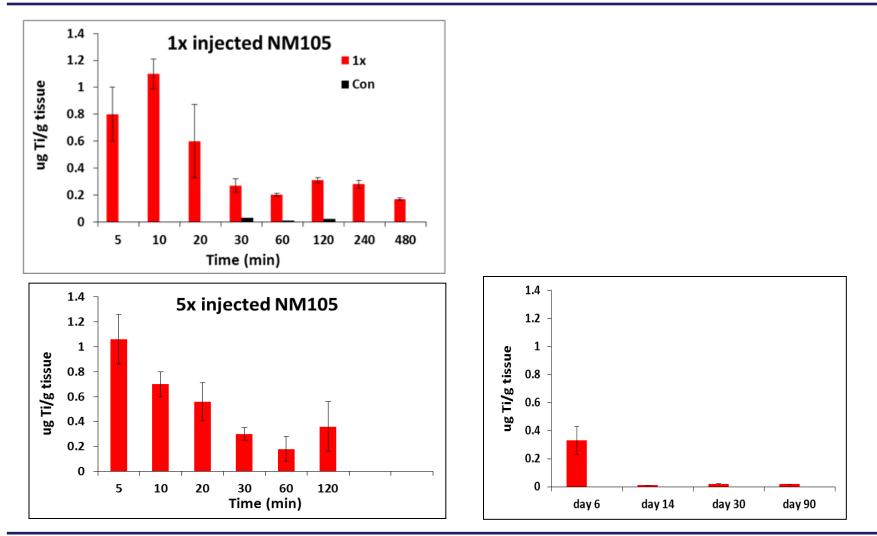
Since we also find NM-105 in the spleen and NM-103 in the liver of some rats, the total translocation is probably larger than shown above


TiO₂ nanomaterials

IV administration TiO₂

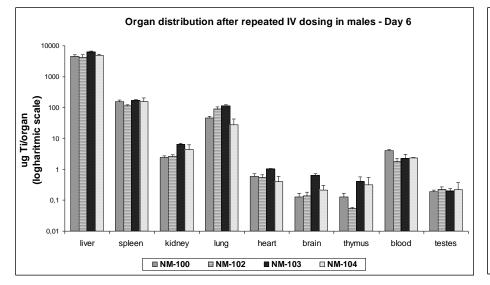
NM-100, 200-220 nm, anatase NM-102, 15-25 nm, anatase NM-103, 20 nm, rutile, hydrophobic NM-104, 20 nm, rutile, hydrophilic NM-105, 22 nm, 85% anatase, 15% rutile

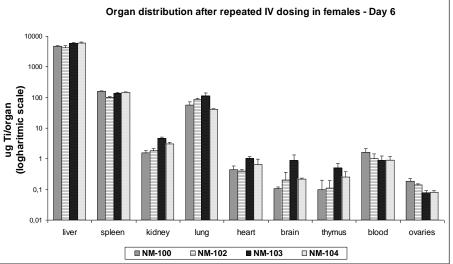
NANOGENETOXBlood kinetics of TiO2 after IV administrationGrant agreement number 2009 21 01NM-100, NM-102, NM-103, and NM-104


NANOGENOTOX – Final Conference – 22 February 2013

NANOGENETOX

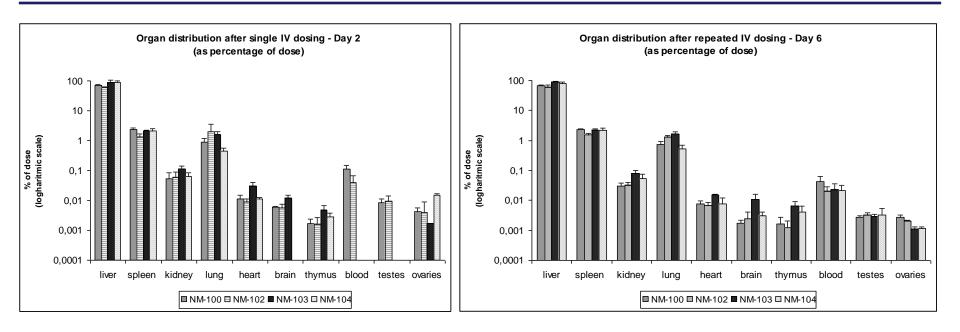
Blood clearance of NM-105 after IV administration


Grant agreement number 2009 21 01



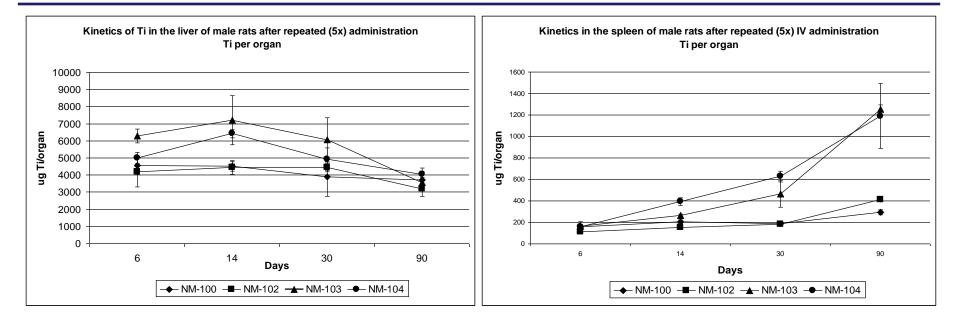
NANOGENOTOX – Final Conference – 22 February 2013

NANOGENETOXOrgan distribution in μg Ti/organ after IV administrationGrant agreement number 2009 21 01NM-100, NM-102, NM-103, and NM-104



NANOGENOTOX – Final Conference – 22 February 2013

NANOGENETOX Grant agreement number 2009 21 01 Organ distribution of Ti as % of dose after IV administration NM-100, NM-102, NM-103, and NM-104

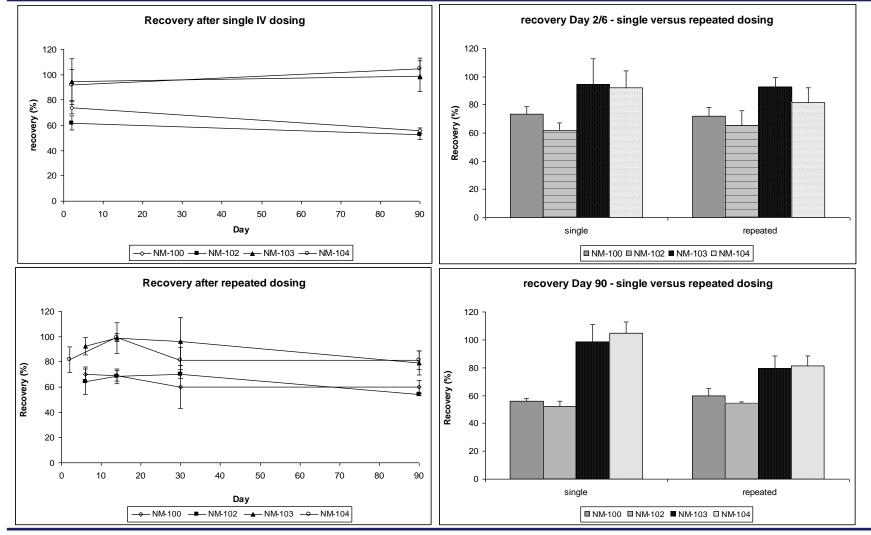


NANOGENOTOX – Final Conference – 22 February 2013

NANOGENETOX Kinetics of organ distribution of Ti day 6 – day 90 after repeated (5x) IV administration: NM-100, NM-102, NM-103, and NM-104

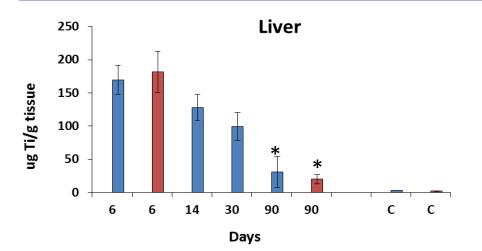
Grant agreement number 2009 21 01

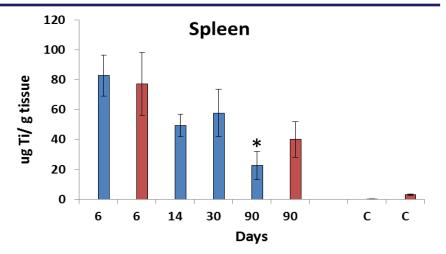
Decrease of Ti in time in liver Increase of Ti in time in spleen

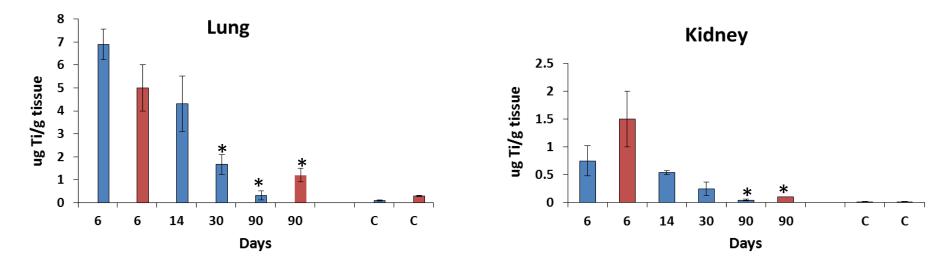

Redistribution between liver and spleen of Ti.

NANOGENOTOX – Final Conference – 22 February 2013

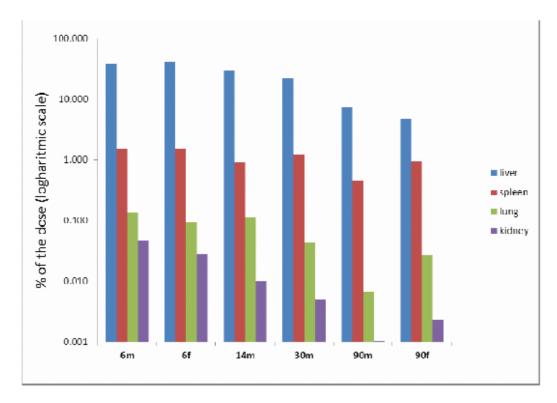
NANOGENETOX Recovery of Ti as percentage of dose after repeated (5x) IV administration NM-100, NM-102, NM-103, and NM-104


Grant agreement number 2009 21 01




NANOGENOTOX – Final Conference – 22 February 2013

NANOGENETOX Tissue distribution of NM-105 after repeated (5x) IV administration



NANOGENOTOX – Final Conference – 22 February 2013

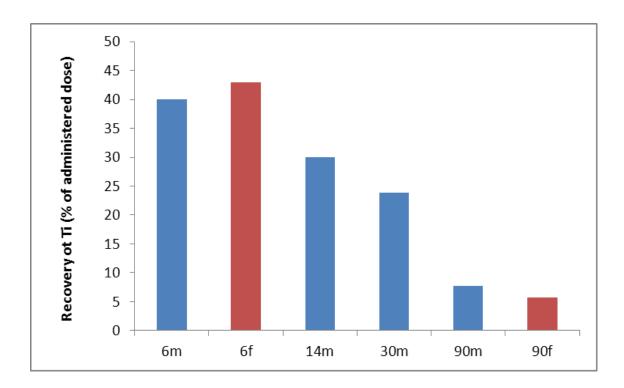
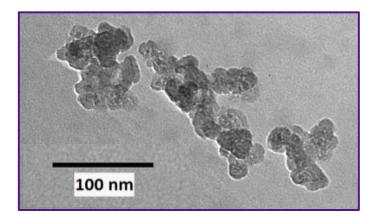

NM-105 Organ distribution as percentage of dose Repeated (5x) IV administration

Figure 7. Organ distribution of NM-105 after 5 repeated i.v. dosing to male and female Wistar rats presented as percentage of dose measured on day 6, 14, 30, and 90. m: male rat; f: female rats.

Recovery of Ti in the investigated organs (liver, spleen, lung, and kidney) following 5 consecutive administrations of NM-105 to male and female Wistar rats presented as percentage of dose measured on day 6, 14, 30, and 90. m: male rat; f: female rats.



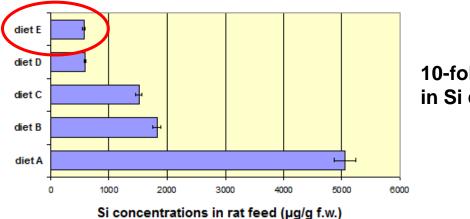
- Main target organs liver and spleen, and to a lesser extent lung and kidney
- Some reduction in Ti content in time, but Ti still present at day 90 after administration
- Repeated dosing (5x) results in fractional increase of Ti content
- NM-105 shows a clear decline in recovery at day 90, whereas for the other TiO₂ nanomaterials the decline at day 90 was limited.
- No excretion via faeces. Ti level in controls and IV treated animals similar (data not shown)

Oral and IV administration of SAS

NANOGENOTOX – Final Conference – 22 February 2013

SiO₂ detection: novel analytical method

Grant agreement number 2009 21 01


Detection method

- Sample preparation
 - Use of *clean room conditions, ultrapure reagents* and *non quartz* (=*SiO₂*) *vessels* to avoid Si contamination
- Analytical detection
 - SiO₂ MNs in tissues and biological fluids determined as Si by quadrupole ICP-MS, but Si determination by Q-ICP-MS regarded as nearly impossible at sub-µg/g levels owing to Si release from equipment and spectral interferences
 - Si release from equipment: the entire sample introduction system of the ICP mass spectrometer has been substituted with non-quartz components
 - Spectral interferences: ICP-MS measurements using *entirely novel analytical method* based on dynamic reaction cell technology (*J Anal Atom Spectrom* 27, 1540 2012)
- Quality control
 - No certified reference materials available \rightarrow in house preparation at ISS of a *quality* control material to check accuracy of Si determination

-
 - Lowering Si background in biological tissues
 - One of the main issues in measuring the concentration of administered SiO₂ MNs in tissues and biological fluids via Si determination is the high endogenous Si background in such matrixes
 - Si background concentration in tissues depends on the Si amount ingested via the diet.
 Different standard rat diets were analysed for their Si content

10-fold differences in Si content found

□ The diet with the lowest Si level was fed to the animals in the *in vivo* studies → Si background in rat tissues was reduced below the analytical LOQ

Tissue concentrations after repeated oral administration of SAS

Grant agreement number 2009 21 01

NANOGEN TOX

Cumulative	Tissue distribution of Si ir	n female rats a	s after repeated oral dose of SAS nanoparticles (mg Si/kg fresh				
dose 100 mg/kg body	 Q	Controls NN		M-200		NM-203	
weight	+		Day 6	Day 14	Day 6	Day 14	
	Liver	0.6±0.1	1.3±0.3	1.3±0.2	0.8±0.2	0.3±0.1	
	Spleen	0.9±0.6	0.6±0.1	1.6±0.6	≤LOD	1.2 ±0.0	
	GI tract*	14.8±2.8	10.5±2.4	17.5±5.9	8.6±1.7	8.6 ±1.8	
	Mesenteric lymph nodes	≤LOD	≤LOD	≤LOD	≤LOD	≤LOD	

Tissue distribution of Si in male rats after repeated oral dose of SAS nanoparticles (mg Si/kg fresh weight).

	7	Controls	NM-200		NM-203	
	8		Day 6	Day 14	Day 6	Day 14
Found	Liver	0.5±0.1	≤LOD	0.4±0.1	≤LOD	≤LOD
concentration LOD and	Spleen	0.6±0.4	≤LOD	0.7 ±0.2	0.9±0.2	0.7±0.1
≤LOQ	GI tract*	18.9±6.9	10.5±2.4	19.8 ±1.6	9.6±4.7	14.3±10.0
* Small intestine	Mesenteric lymph nodes	≤LOD	≤LOD	≤LOD	≤LOD	≤LOD

Tissue concentrations after single IV administration of SAS

Grant agreement number 2009 21 01

Single IV dose 20 mg/kg body weight

Tissue distribution of Si in **female rats** (n=3) after single IV dose of SAS nanoparticles (mg Si/kg fresh weight).

Tissue distribution of Si in **male rats** (n=3) after single IV dose of SAS nanoparticles (mg Si/kg fresh weight).

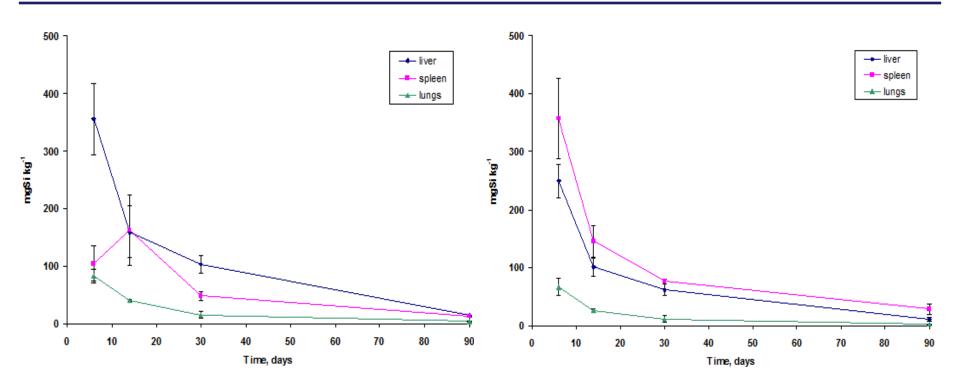
\bigcirc	Controls	NM-	200	NM-203		
¥		Day 2	Day 90	Day 2	Day 90	
Liver	0.4 ±0.1	97.4±14.8	1.6±0.8	97.7±19.1	1.2±0.8	
Spleen	≤LOD	39.9±6.1	0.6±0.1	78.7±22.0	0.7±0.5	
Lungs	0.7±0.3	41.8±8.0	1.2±0.1	11.2±7.3	≤LOD	
Heart	0.5±0.4	0.9±1.0	0.4±0.2	0.4±0.3	0.5±0.4	
Brain	0.4±0.3	0.4±0.1	0.3±0.0	0.4±0.1	0.6±0.2	
Kidneys	0.5±0.1	1.2±0.3	0.9±0.5	0.8±0.2	0.6±0.1	
Ovaries	≤LOD	≤LOD	≤LOD	≤LOD	≤LOD	

7	Controls	NM-200		NM-	NM-203	
Q.		Day 2	Day 90	Day 2	Day 90	
Liver	0.5 ±0.1	105.3±10.3	4.1±2.7	97.8±20.3	1.6±1.7	
Spleen	≤LOD	39.0±15.0	1.1±1.5	237.3±28.9	≤LOD	
Lungs	0.7±0.3	43.4±10.2	≤LOD	24.0±1.2	≤LOD	
Heart	0.6±0.2	0.8±0.2	1.2±0.4	2.1±0.4	0.5±0.1	
Brain	0.5±0.2	0.4±0.1	0.4±0.1	0.5±0.1	0.8±0.6	
Kidneys	0.4±0.1	1.1±0.2	0.4±0.1	1.4±0.1	0.6±0.3	
Testis	1.6±1.0	1.1±0.2	0.9±0.1	1.2±0.2	0.8±0.3	

Cumulative IV dose 20 mg/kg body weight

Table 5-13. Tissue distribution of Si in male rats (n=3) after repeated IV dose of SAS nanoparticles (mg Si/kg fresh weight).

	Controls	NM-200			NM-203				
		Day 6	Day 14	Day 30	Day 90	Day 6	Day 14	Day 30	Day 90
Liver	0.4 ± 0.0	355 ± 62	159 ± 45	103 ± 15	14 ± 2	250 ± 29	100 ± 16	62 ± 10	11 ± 4
Spleen	≤LOD	105 ± 30	162 ± 61	48 ± 8	13 ± 1	357 ± 69	146 ± 27	77 ± 4	28 ± 9
Lungs	0.8 ± 0.3	82 ± 11	40 ± 2	16 ± 6	3.6 ± 0.8	66 ± 14	25 ± 3	11 ± 5	2.0 ± 0.4
Heart	0.6 ± 0.2	3.1 ± 1.2	2.7 ± 1.5	1.0 ± 0.3	0.9 ± 0.3	5.4 ± 3.5	3.7 ± 3.9	1.6 ± 1.3	1.8 ± 1.3
Brain	0.5 ± 0.2	0.5 ± 0.0	0.6 ± 0.1	0.4 ± 0.1	0.3 ± 0.0	0.6 ± 0.2	0.4 ± 0.0	0.4 ± 0.0	0.4 ± 0.0
Kidneys	0.4 ± 0.1	2.5 ± 0.4	0.7 ± 0.1	0.6 ± 0.0	0.5 ± 0.7	6.2 ± 1.2	3.3 ± 1.0	1.4 ± 0.4	0.6 ± 0.1
Testis	1.3 ± 0.3	1.4 ± 0.1	1.2 ± 0.1	0.7 ± 0.1	0.7 ± 0.1	1.7 ± 0.6	1.0 ± 0.1	0.7 ± 0.0	0.7 ± 0.1


Found concentration >LOD and ≤LOQ

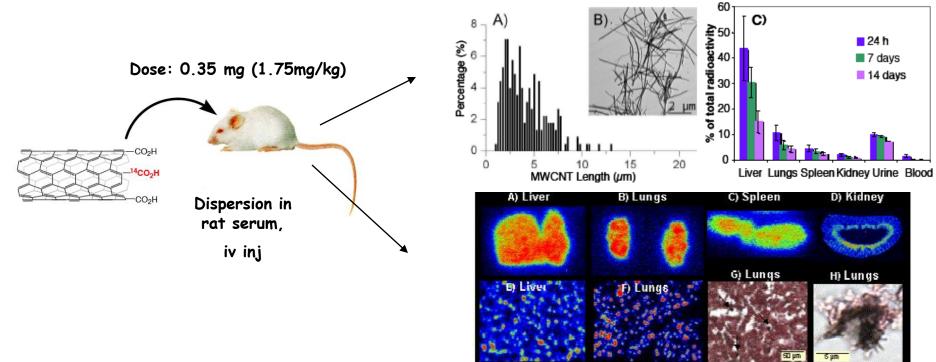
Repeated IV administration: differences between MNs

Grant agreement number 2009 21 01

NANOGENTOX

Organ distribution after IV repeated dosing of **NM-200** (*left*) and **NM-203** (*right*) for 5 days to male Sprague-Dawley rats. Si levels in major organs are shown.

NANOGENOTOX – Final Conference – 22 February 2013



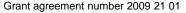
- Negligible to no accumulation of Si after **repeated oral administration**
- Single and repeated IV administration resulted in accumulation in various organs
 - After IV administration main target organs liver, spleen, and lung
 - Gender and particle differences were noted (NM-200 highest in liver, NM-203 highest in spleen)
 - Liver and spleen pathology after NM-203 administration
- Gradual decrease in organ levels over time

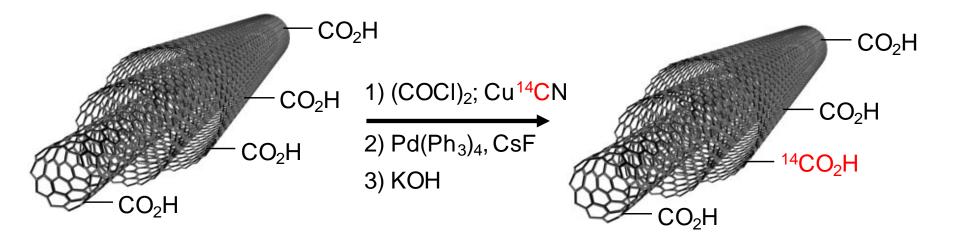
Biopersistence of MWCNT in rat after i.v. exposure (previous studies)

Conclusions :

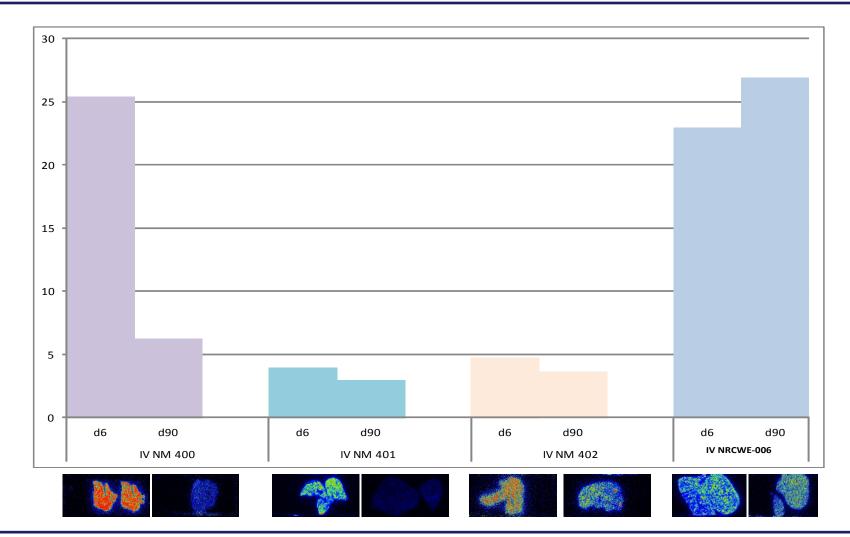
1°the sensitivity threshold will make possible to detect CNT 3 to 6 months after injection, biopersistence can be assessed.

2° aggregates are observed : formed during their dispersion in solution or after ?


3° after 14 days, 10% of the injected dose can be detected in liver.

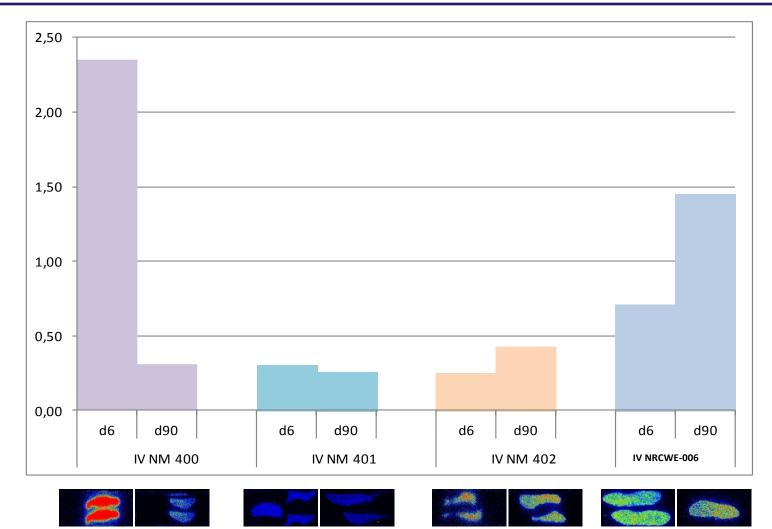

NANOGENOTOX – Final Conference – 22 February 2013

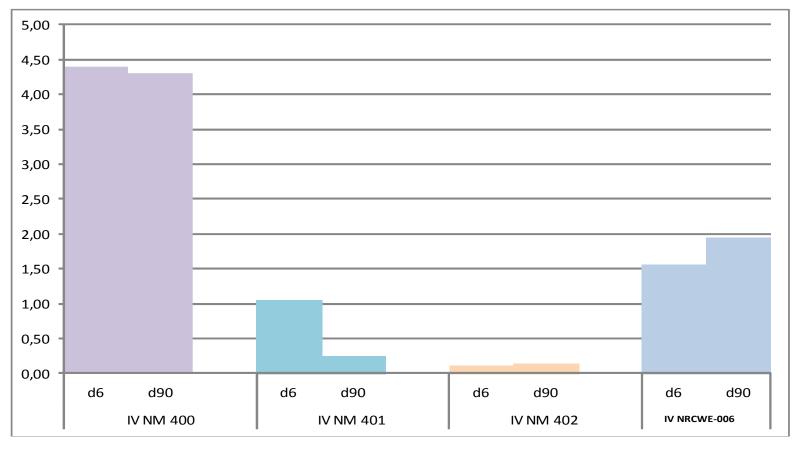
Georgin and al, JACS 2009, 131, 14658



Scheme. Radiolabelling of NT batches

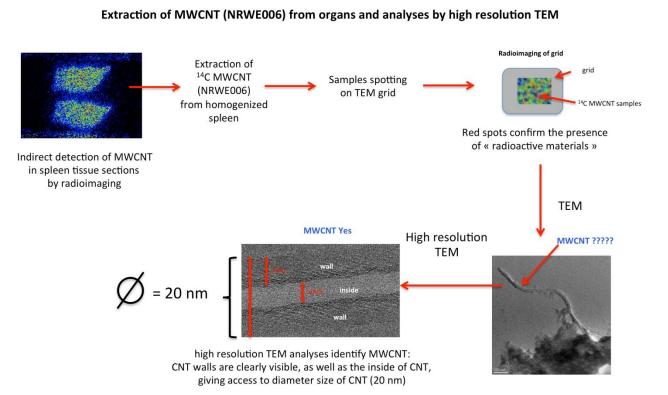
NANOGENOTOX – Final Conference – 22 February 2013





NANOGENOTOX – Final Conference – 22 February 2013

NANOGENOTOX – Final Conference – 22 February 2013


NANOGENITOX Recovery ¹⁴C in major organs as % of dose (males repeated dose)

MWCNT	Day 6	Day 14	Day 30	Day 90
NM-400	39 ± 10	45 ± 21	20 ± 8	11 ± 4
NM-401	5.6 ± 3	6.9 ± 1.5	4.4 ± 0.6	3.6 ± 0.6
NM-402	5.3 ± 1.9	4.7 ± 0.5	4.1 ± 1.1	4.2 ± 1.9
NRCWE-006	26 ± 20	38 ± 6	42 ± 91	31 ± 10

Recovery is expressed as % of total dose administered.

NANOGENOTOX – Final Conference – 22 February 2013

- No uptake after oral administration
- Liver, spleen and lung were the main target organs (IV administration)
 - Presence of radiolabelled MWCNT identified with TEM
- Major differences were noted between the 4 investigated CNT nanomaterials
 - □ NM-400 decrease in liver and spleen day 6-day 90, not in lung
 - NM-401 minimal decrease day 6-day 90
 - NM-402 and NRCWE-006 no decrease day 6 day 90

- Maximum dose as prepared according to dispersion protocol of WP (from 10 to 20 mg/kg bw) is generally well tolerated by the animals
- Main target organs liver and spleen, followed by lungs and kidney after IV administration
- Low if any absorption of MN from the GI-tract
- In general there is a decrease in organ levels over time, but for some TiO₂
 MN it is a rather minimal decrease with suggestion for persistence
- Differences between TiO₂ MNs investigated are minimal with the exception of the decrease in organ concentrations of NM-105
- For SAS (SiO₂) there is a clear decrease in time in liver, spleen and lungs
- Differences between SAS MNs investigated were noted (toxicity)
- Some clear differences can be noted between the different MWCNT

WP7 Partners involved

Grant agreement number 2009 21 01

- AFFSA-MA (ANSES), France
 - Thierry Guérin, Laurent Noël, Yacine Nia
- AFFSA-F (ANSES), France
 - Michel Laurentie
- BfR, Germany
 - Jutta Tentschert
- CEA, France
 - Vincent Dive, Frédéric Taran, Olivier Spalla, Bertrand Czarny
- IMB-BAS, Bulgaria
 - Margarita Apostolova, Irina Karadjova, Julian Kirilov, Nina Kaneva
- INERIS, France
 - Benedicte Trouillier
- ISS, Italy
 - Francesco Cubadda, Francesca Maranghi, Federica Aureli
- NRCWE, Denmark
 - Nicklas Raun Jacobsen, Håkan Wallin
- RIVM, The Netherlands
 - Wim De Jong (WP leader), Esther Brandon, Agnes Oomen

Discussion regarding WP 7

Elias Fattal Institut Galien Paris-Sud/UMR CNRS 8612 Université Paris Sud

Châtenay-Malabry

NANOGENOTOX – Final conference – 22 February 2013

Main Observations

- The choice of IV administration raises the question of relevance of the route of administration and the choice of the dispersing medium the question of impact on distribution
- Liver and Spleen are always target tissues whatever the nanoparticles (this is classical but bone marrow should have been explored as well)
- Silica nanoparticles are the only particles that are cleared whereas accumulation and persistence seems to occur for all other types
- Oral administration show low level of uptake but Peyers patches should be explored

Recommandations

- Explore deeply cellular fate of the diverse nanoparticles after liver uptake (Küpffer cells or hepatocytes)
- Explore if hepatocytes functions are modified in, case of hepatocytes uptake
- The persistence of materials raises the question of carcinogenicity

