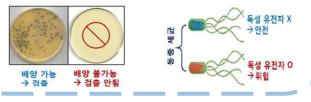

Rapid Detection and Identification of Food-borne Pathogens using Single Nucleotide Polymerphism (SNP) Profiling of Their Whole Genome Sequences (WGS)

2019. 3. 26.

Ju-Hoon Lee, Ph.D.

Dept of Food Science and Biotechnology, Kyung Hee University National Institute of Food and Drug Safety Evaluation, South Korea

Importance of Foodborne Pathogen Study



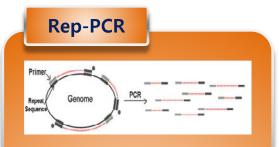
Culture-based biochemical tests

Problems

- Inefficiency by long cultivation time
- No information about FP genomes
- No information about Food-specific virulence factor gene expression
- No detection of unculturable FP

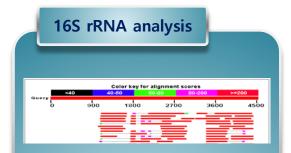
Rep-PCR, PFGE DNA-based tests

- Low identification fidelity even due to short DNA sequence modulation or point mutation
- Low accuracy due to short DNA sequences



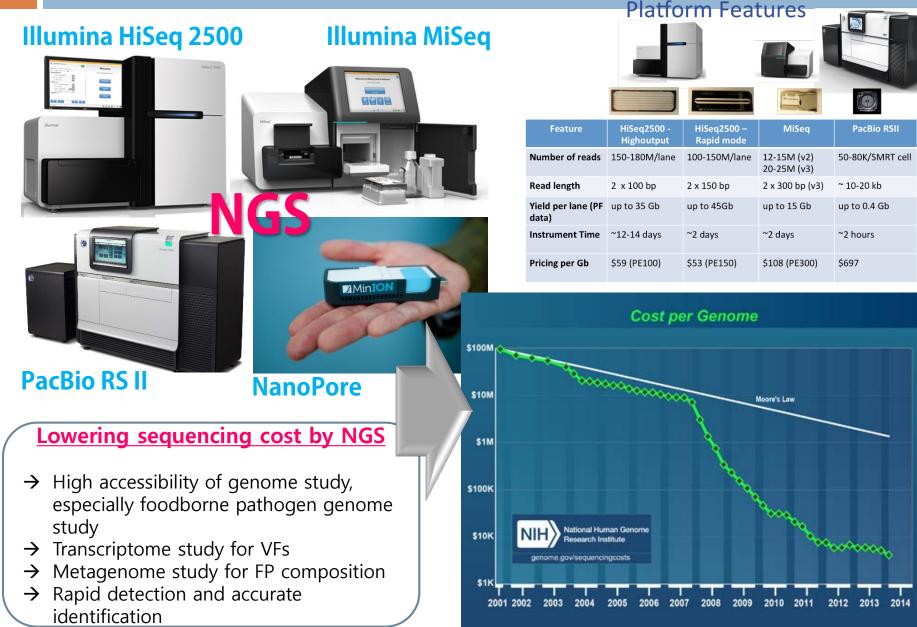
Omics-based identification

- Acquisition of FP genome information and rapid identification
- Transcriptome-based identification of foodspecific VFs
- Metagenome-based identification of unculturable FP
- DB construction of FP genome/transcriptome/ metagenome
- Development of rapid FP identification pipeline program using specific SNP patterns


Molecular Identification Techniques for Rapid Detection of FP

- Rep-PCR is performed using PCR with repeat sequence-targeting primer
- According to the PCR band patterns, the strain is identified
- Advantage: Rapid bacterial identification is possible, even though its genome sequence is unknown
- Disadvantage: There is a limitation and low accuracy for bacterial identification with very short PCR band patterns, according to the locations of repeat sequences

- PFGE analysis is based on the locations of specific restriction enzyme (RE) recognition sites
- According to the DNA band patterns after specific RE digestion, the strain is identified
- Advantage: PulseNet DB is well-developed and organized for rapid identification with RE band patterns, even though its genome sequence is unknown
- Disadvantage: Only a point mutation in RE sites can change PFGE band patterns, indicating low accuracy



- 16S rRNA sequence analysis is based on sequence homology for bacterial identification
- PCR and sequencing of 16S rRNA gene can be done quickly
- Advantage: Massive amount of bacteria 16S rRNA sequences are accumulated in many DBs.
- Advantage: Accurate detection and identification are possible in genus and even species level
- Disadvantage: Relatively low resolution and accuracy comparing to ANI analysis with whole genome sequences

Based on Foodborne pathogen whole genome sequences, rapid and accurate identification is possible for advanced food safety

^{품의약품안전처} 금의약품안전평가원

Next-Generation Sequencing (NGS)

International Trend of Omics Study for Foodborne and Clinical Pathogens

U.S. Food and Drug Administration Protecting and Promoting Your Health

- Launched in 2012 by UC Davis (Dr. Bart Weimer)
- FDA, Agilent Technologies, BGI supported

[Collaborators]

- China FDA for 10K (100K Genome Project China)
- NIFDS/FORC for 1K (100K Genome Project Korea)
- Health Canada for 10K Salmonella (100K Genome Project Canada)

FDA's GenomeTrakr

ACGACGATEGATGATCATCATC

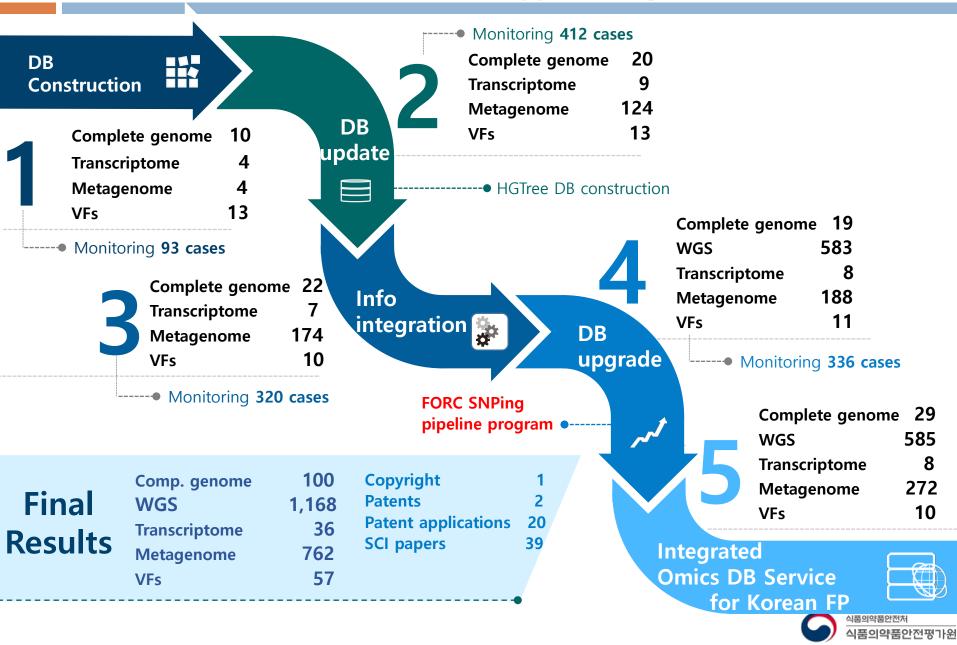
- Launched in 2012 by US FDA
- Collaborated with US CDC for *Listeria*
- Collaborated with MN/WA/NY/FDA for Real-time Salmonella
- In addition, >24 national labs joined this project for pathogen genome sequencing
- E. coli, Campylobacter, Vibrio, Cronobacter, etc.

School of Veterinary Medicine		genomes of important pathogens to increase food security. Contact Us	
Email: brywner@ucdavs.edu	Sc	UC Davis	

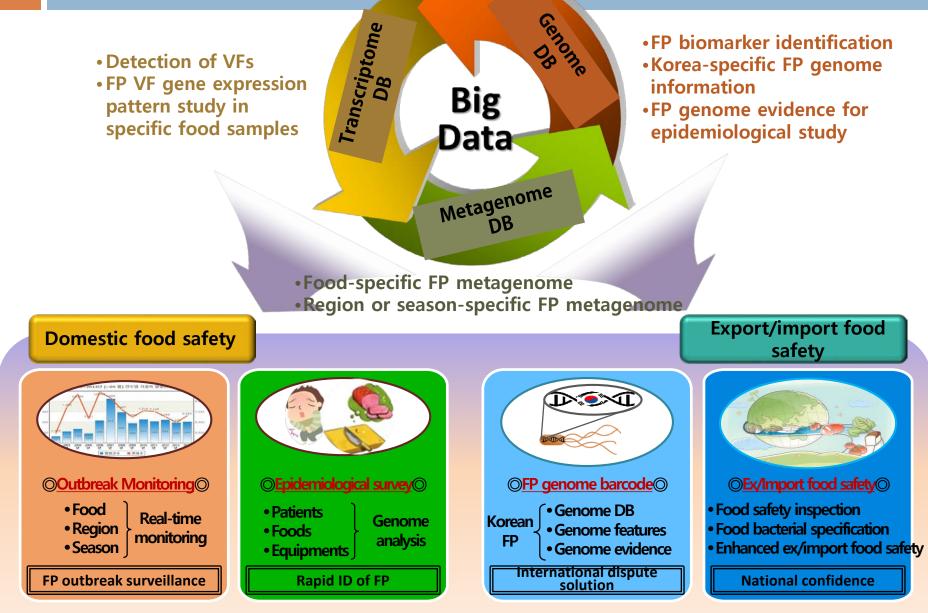
Total Number of Sequences in the GenomeTrakr Database

Omics Research Trend in South Korea : FORC by NIFDS

<i>Salmonella</i> 2.16s-63.8s	<i>E. coli</i> 0157 and <i>Shigella</i> 2.16s-54.17s	non-O157 STEC 6.76s-35.38s	Listeria monocytogenes 4s-40s	Campylobacter jejuni 6.76s-35.38s (Smal)
1135		-668.9		-668.9
668.9	668.9		- 452.7	452.7
452.7			398.4 336.5 310.1	= -336.5 310.1
336.5 310.1 244.4	310.1		244.4	244.4 216.9
216.9	216.9 		173.4	
	76.8		104.5 78.2 54.7	
33.3 28.8 20.5	33.3		33.3 28.8 20.5	
			20.0	20.0
Vibrio cholerae 2-10s/13hr 20s-25s/6hr	Vibrio Parahaemolyticus 10s-35s	Yersinia pestis 1.79s-18.66s (Ascl)	Yersinia pestis 2.16s-25s (Fsel)	Campylobacter jejuni 5.2s-42.3s (Kpnl)
2-10s/13hr	Parahaemolyticus 10s-35s — 668.9	1.79s-18.66s (Ascl)	Yersinia pestis 2.16s-25s (Fsel)	Campylobacter jejuni 5.2s-42.3s
2-10s/13hr 20s-25s/6hr	Parahaemolyticus 10s-35s 668.9 452.7 - 398.4	1.79s-18.66s (Ascl)	Yersinia pestis 2.16s-25s (Fsel) 452:7 338.4 338.4 336.5	Campylobacter jejuni 5.2s-42.3s (Kpnl) 11135 668.9 452.7 398.4
2-10s/13hr 20s-25s/6hr 	Parahaemolyticus 10s-35s 	1.79s-18.66s (Asci)	Yersinia pestis 2.16s-25s (Fsel)	Campylobacter jejuni 5.2s-42.3s (Kpni) 1135 668.9
2-10s/13hr 20s-25s/6hr 	Parahaemolyticus 10s-35s 	1.79s-18.66s (Ascl)	Yersinia pestis 2.16s-25s (Fsel)	Campylobacter jejuni 5.2s-42.3s (Kpnl)
2-10s/13hr 20s-25s/6hr 	Parahaemolyticus 10s-35s 	1.79s-18.66s (Asci)	Yersinia pestis 2.16s-25s (Fsel) 990.4 336.6 310.1 244.4 216.9 173.4 167.1	Campylobacter jejuni 5.2s-42.3s (Kpni)
2-10s/13hr 20s-25s/6hr 305-25s/6hr 305-5 3	Parahaemolyticus 10s-35s 	1.79s-18.66s (Asci)	Yersinia pestis 2.16s-25s (Fsel)	Campylobacter jejuni 5.2s-42.3s (Kprl)

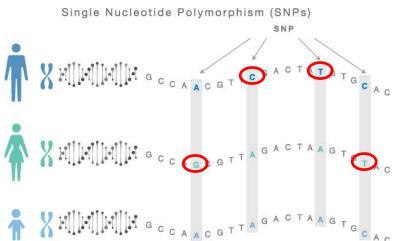


- Food metagenome
- VF transcriptome

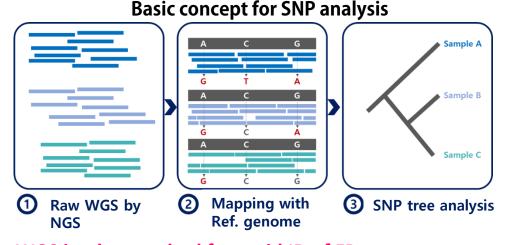

SNP analysis for Rapid detection and identification

┛품의약품안전평가원

Research Results of Food-borne Pathogen Omics Research Center (FORC) in South Korea (2014-2018) Supported by NIFDS


Application of FP Omics Study

WGS-based GenomeTrakr SNP Analysis for Rapid ID of FP


CFSAN SNP Pipeline (2014-15)

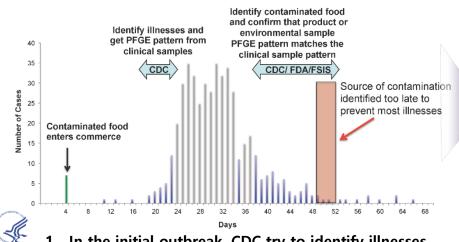
Documentation: http://snp-pipeline.rtfd.org

Source Code: <u>https://github.com/CFSAN-Biostatistics/snp-pipeline</u>

Pettengill JB, Luo Y, Davis S, Chen Y, Gonzalez-Escalona N, Ottesen A, Rand H, Allard MW, Strain E. (2014) An evaluation of alternative methods for constructing phylogenies from whole genome sequence data: a case study with *Salmonella*. PeerJ 2:e620 http://dx.doi.org/10.7717/peerj.620

Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20 https://dx.doi.org/10.7717/peerj-cs.20

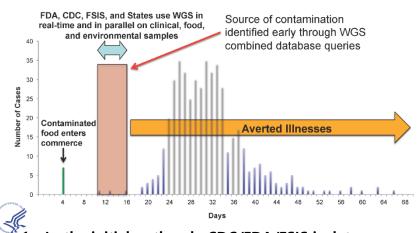
식품의약품안전평가원


<u>Comparative SNP tree analysis using WGS is a key method for rapid ID of FP</u>

Advantage of GenomeTrakr WGS/SNP Pipeline over Traditional PFGE Analysis

WGS/SNP

PFGE

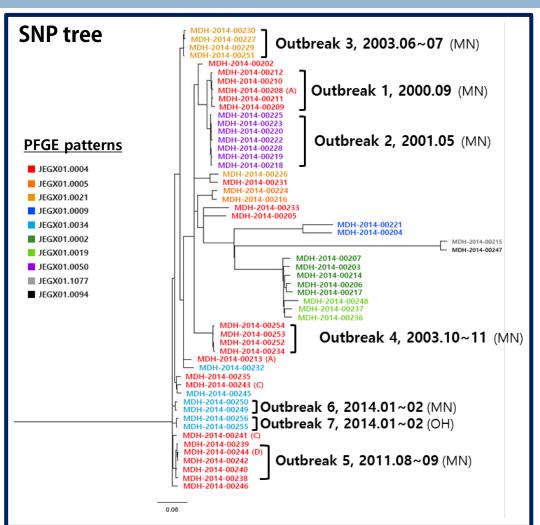


- 1. In the initial outbreak, CDC try to identify illnesses and isolates original FP strain from clinical sample for PFGE analysis
- 2. PFGE pattern is obtained from the strain in clinical sample
- 3. Contaminated food is identified by CDC/FDA/FSIS and FP strain is isolated from the food sample
- 4. PFGE pattern is obtained from the strain in food sample
- 5. The PFGE patterns between clinical and food isolates are compared for matching
- 6. Source of contamination is finally identified

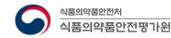
 \rightarrow <u>It is too late to prevent the propagation of food</u> <u>outbreak</u>

TARGET: Timeline for Foodborne Illness Investigation Using Whole Genome Sequencing

- In the initial outbreak, CDC/FDA/FSIS isolate potential FP strains from clinical and food samples at the same time
- 2. WGS is performed using NGS and then original FP strain is identified with WGS DB, which is present in both samples
- 3. Source of contamination is finally identified
- 4. For further epidemiological study, SNP analysis is conducted with WGS data and then FP strain is confirmed in the SNP-based reference tree with its SNP pattern


 \rightarrow <u>It is possible to prevent the propagation of</u> <u>foodborne pathogen before outbreak</u>

Evaluation of FORC SNPing Pipeline vs. PFGE/GenomeTrakr Pipeline


- FORC SNPing pipeline was evaluated with 55 *S.* Enteritidis strains from Minnesota and Ohio, USA
- WGS was obtained and SNP tree analysis was conducted
 - : PFGE pattern analysis is impossible to determine the original outbreak for specific FP
 - : SNPing pipeline analysis can determine the original outbreak for specific FP in SNP tree

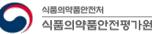
	한국 식약처 FORC SNPing	US FDA CFSAN SNP pipeline
True Positive	49,483 / 50,000	49,358 / 50,000
True Negative	479,815,994 / 479866000	479,815,995 / 479866000
False Positive	6	5
False Negative	517	642
Sensitivity	99.0%	98.7%
Accuracy	99.9%	99.9%
Specificity	99.9%	99.9%

Prerequisites for enhanced accuracy of SNP tree analysis

- Various reference genome sequences with high accuracy and fidelity are required
- Massive WGS information and correct outbreak history are required
- Highly accurate reference SNP tree should be constructed
- Optimized NGS facility and most recently updated SNP pipeline program are required

Summary

1. Omics study for foodborne pathogen is required for advanced food safety


- Accumulation of **complete genome sequences** as reference genomes is important for accurate identification of foodborne pathogens
- **Transcriptomics** study is required to understand virulence factor gene expression in specific food environments for regulation of virulence and toxicity in foodborne pathogens
- **Metagenomics** study is required to elucidate composition and population of foodborne pathogens in specific foods for prevention of foodborne outbreaks by control of the food consumption

2. SNP analysis using WGS is required for practical application and further epidemiological survey

- Accumulation of whole genome sequences of various foodborne pathogens and their outbreak history are needed to overcome the limitation of PFGE analysis
- WGS-based SNP analysis data should be collected in database and the reference SNP tree should be constructed with the most updated SNP profiles
- **FORC SNPing pipeline program** is more sensitive and faster for identification of foodborne pathogens and their epidemiological survey than GenomeTrakr CFSAN pipeline program

3. Further SNP analysis study is important to improve efficiency and accuracy

- WGS data in all public databases and WGS of more than 6,000 foodborne pathogens will be collected for **update of SNP database in FORC DB**
- FORC SNPing pipeline program will be more optimized and upgraded for analysis service

Thank You for Attention

