





INSTRY OF FOOD AND DRUG SAFETY National Institute of Food and Drug Safety Evaluation

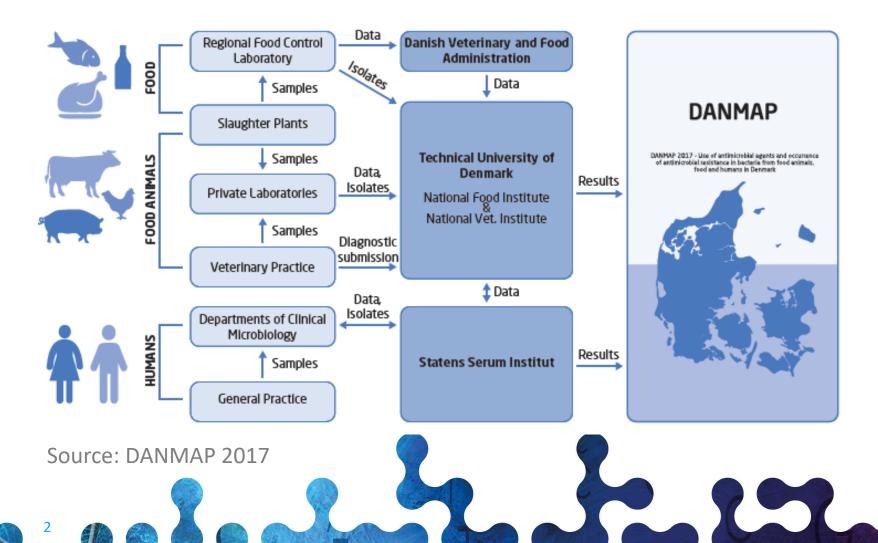


## Past, present and future in the Danish antimicrobial resistance monitoring programme (DANMAP)

Valeria Bortolaia, DVM, PhD **Research Group for Genomic Epidemiology** National Food Institute Technical University of Denmark 

000

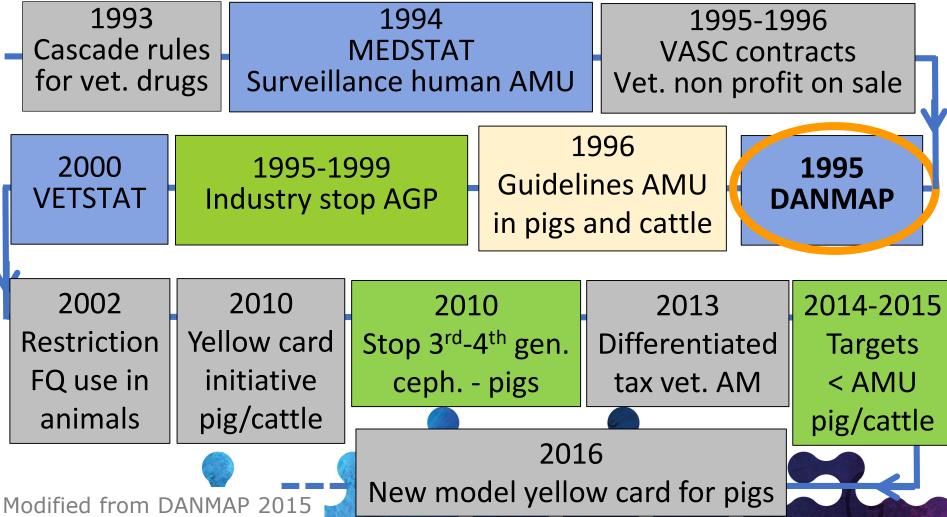





DTU

National Institute of Food and Drug Safety Evaluation




### **Organisation of DANMAP**

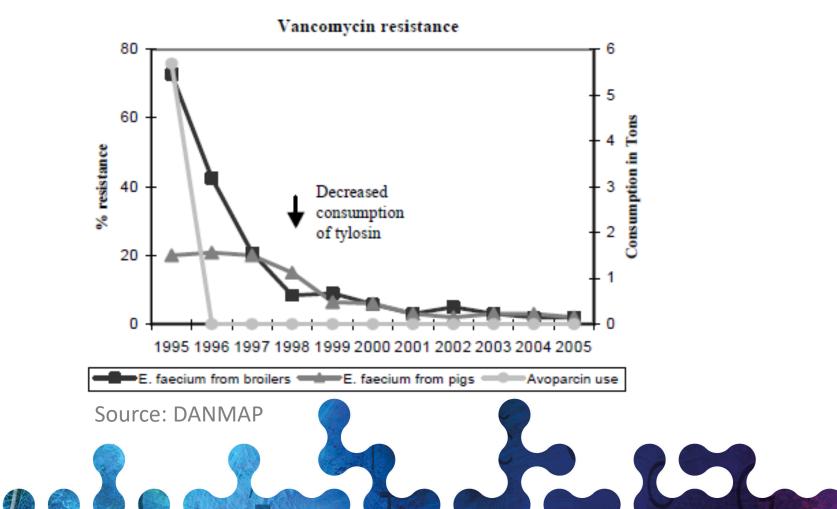






#### DANMAP as a milestone to tackle AMU & AMR in humans and food-producing animals









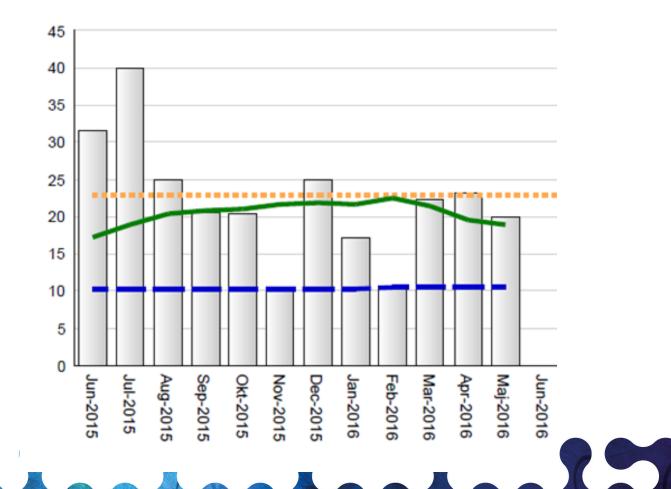



### **Termination of AGPs & AMR occurrence**










DTU

National Institute of Food and Drug Safety Evaluation



### The yellow card initiative



STATE.

5









### **DANMAP in the One Health strategy**

### Enhanced knowledge to improve targeted measures





Roer et al.





National Institute of Food and Drug Safety Evaluation



### Zoonotic (broiler) origin of the ST131 *fimH22* CMY-2-producing *E. coli* from a Danish patient

| Camb<br>Denn  | ulia<br>I Kingdom<br>odia<br>ark<br>I States<br>any | Year of isolation | Country | Isolation source | <i>fimH</i> variant | Incl1 pMLST |   |         |
|---------------|-----------------------------------------------------|-------------------|---------|------------------|---------------------|-------------|---|---------|
| Nede          |                                                     | 2014              |         |                  | _                   |             |   |         |
| Luxer         |                                                     | Referenc          | e       |                  | Τ.                  |             |   |         |
| Spair         | -                                                   | 2015              |         |                  | -                   |             |   |         |
| Belgi         | m – –                                               | 2013              |         |                  |                     |             |   |         |
| Isolatio      |                                                     | 2016              |         |                  | -                   |             |   |         |
| Huma          |                                                     | 2013              |         |                  |                     |             |   |         |
| Broile        |                                                     | 2012              |         |                  | _                   |             |   |         |
| Broile        |                                                     | 2009              |         |                  |                     |             |   |         |
| ,             |                                                     | - 2013            |         |                  |                     |             |   |         |
| fimH va       |                                                     | L2009             |         |                  |                     |             |   |         |
| fimH2         |                                                     | 2014              | _       |                  | -                   | -           | i |         |
| fimH3         |                                                     | 2016<br>2013      |         |                  |                     |             |   |         |
| fimH4         |                                                     | 2013              |         |                  |                     |             |   |         |
| imH2 fimH2    |                                                     | 2012              |         |                  |                     |             |   |         |
| fimH1         |                                                     | -2014             |         |                  |                     |             |   |         |
|               |                                                     | -2009             |         |                  |                     |             |   |         |
| Incl1 pM      | LST                                                 | 2014              |         | _                |                     | ŏ           |   |         |
| ST2           |                                                     | -2015             |         |                  | _                   |             |   |         |
| ST12          | Ч                                                   | 2015              |         | -                |                     |             |   |         |
| ST20          | r                                                   | 2016              |         | -                | _                   | -Ŏ-         |   |         |
| ST55 ST17     | , l <sub>l</sub>                                    | 2016              |         |                  |                     | -Ŏ-         |   |         |
| Unkn          |                                                     | 2016              |         |                  |                     | •           |   |         |
|               |                                                     | 2016              |         |                  |                     |             |   |         |
| <b>JAC 20</b> | 18                                                  | 2016              |         |                  |                     |             |   |         |
|               | Tree scale: 100                                     |                   |         | ,                |                     |             |   | A STATE |









### Zoonotic (broiler) origin a ST4292 CMY-2producing *E. coli* from a Danish patient...

CMY-2 producing *E. coli* isolate causing a bloodstream infection was observed. Investigation of the clonal relationship of ST429 CMY-2 producing *E. coli* from human and animal origin suggested a close zoonotic link, with only six SNP differences between the human isolate (O) and the closest broller (animal) isolate (G). Additionally, among nine of the isolates of animal origin (including isolate G) 33 or less SNPs were detected, indicating high clonality between the isolates.

# ...no animal/meat & human link for other ESBL-producing *E. coli*

For the combinations ST69 with CTX-M-1, ST88 with CTX-M-1, ST117 with CTX-M-1, ST224 with CTX-M-15, and ST362 with CTX-M-1, more than 100 SNPs were observed between the isolates of animal and human origin. These five combinations were not investigated further.

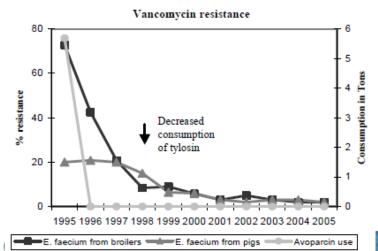











### **Rapid detection of emerging resistance...**

**RAPID COMMUNICATIONS** Eurosurveillance 2015

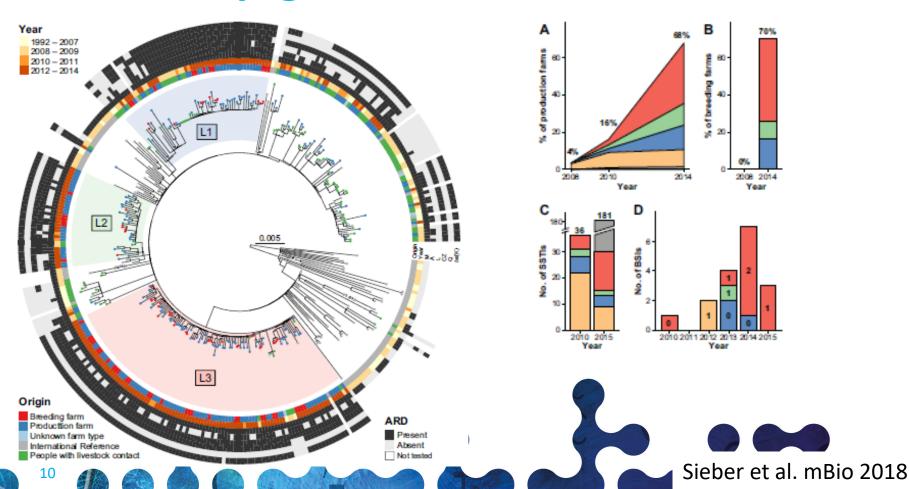
Detection of mcr-1 encoding plasmid-mediated colistin-resistant *Escherichia coli* isolates from human bloodstream infection and imported chicken meat,

Availability of WGS data allowed detection of *mcr-1* in DK (2012-2015 isolates) within 2 weeks since the first *mcr-1* description

### ...surprising findings of persistent resistance



*E. faecium*, pigs, DANMAP 2012 *vanR*, *vanS*, *vanY*, *vanZ*: 100% id *vanA*: 99.9% id *vanX*: 99.8% id










### Dynamics of MRSA CC398 in pigs and humans, DK











### **ResFinder 4.0 for in silico antibiograms**

| Gene_accession no.  | Class                                               | Phenotype                                                 | PMID                                      | Mechanism of<br>resistance | Notes                                                                    |  |  |
|---------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------|--------------------------------------------------------------------------|--|--|
| fosX_1_AP010904     | osX_1_AP010904 Fosfomycin Fosfomycin 19675025       |                                                           | 19675025                                  | Enzymatic<br>inactivation  |                                                                          |  |  |
| fos_1_ACCV01000052  | os_1_ACCV01000052 Fosfomycin Fosfomycin unpublished |                                                           | Enzymatic<br>inactivation                 |                            |                                                                          |  |  |
| tetA(46)_1_HQ652506 | Tetracycline                                        | Doxycycline,<br>Tetracycline,<br>Tigecycline,see<br>Notes | 22941900                                  | Increased<br>efflux        | both tetA(46) and<br>tetB(46) must be<br>present to confer<br><b>FFS</b> |  |  |
| tetB(46)_1_HQ652506 | Tetracycline                                        | Doxycycline,<br>Tetracycline,<br>Tigecycline,see<br>Notes | Experts' opinion &<br>literature searches |                            |                                                                          |  |  |
| tet(57)_1_ KP137702 | Tetracycline                                        | Doxycycline,<br>Tetracycline                              | illera                                    | I CHES                     |                                                                          |  |  |
|                     |                                                     |                                                           |                                           |                            |                                                                          |  |  |





### ResFinder 4.0 performance: Salmonella sp.

- 1,095 isolates from NARMS
- 7 antimicrobials (AMP, FOX, CHL, CIP, GEN, NAL, TET)
- 7,657 antimicrobial-isolate combinations

| 98.5 % genotype-phenotype concordance |      |                                                                                |                                                     |  |  |  |  |
|---------------------------------------|------|--------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| AMP                                   | 98 % | No gene but pheno <sup>R</sup>                                                 | <i>bla</i> <sub>TEM-1</sub> but pheno <sup>S</sup>  |  |  |  |  |
| FOX                                   | 99 % | No gene but <u>pheno</u> R                                                     |                                                     |  |  |  |  |
| CHL                                   | 99 % | No gene but <u>pheno</u> R                                                     | floR but phenos                                     |  |  |  |  |
| CIP                                   | 97 % | <i>qnrB19, qnrS2, or aac(6')-Ib-cr</i> but pheno <sup>s</sup>                  |                                                     |  |  |  |  |
| GEN                                   | 99 % | No gene but pheno <sup>R</sup> <i>ant(2'')-Ia</i> but <u>pheno<sup>S</sup></u> |                                                     |  |  |  |  |
| NAL                                   | 99 % | No gene/mut. (only <i>qnr</i> ) but pheno <sup>R</sup>                         |                                                     |  |  |  |  |
| TET                                   | 98 % | No gene but pheno <sup>R</sup>                                                 | <i>tet</i> A, B, or C but <u>pheno</u> <sup>S</sup> |  |  |  |  |
| 12 <b>1</b> 2                         |      |                                                                                |                                                     |  |  |  |  |





### ResFinder 4.0 performance: *C. jejuni*

- 223 poultry isolates from five EU countries
- 6 antimicrobials (CIP, ERY, GEN, NAL, STR, TET)
- 1,286 antimicrobial-isolate combinations

| 98.5 % genotype-phenotype concordance |     |   |                                     |                                            |  |  |
|---------------------------------------|-----|---|-------------------------------------|--------------------------------------------|--|--|
| CIP                                   | 98  | % | No mut. but pheno <sup>R</sup>      |                                            |  |  |
| ERY                                   | 99  | % | No gene/mut. but pheno <sup>F</sup> | R                                          |  |  |
| GEN                                   | 100 | % | No R isolates in dataset            |                                            |  |  |
| NAL                                   | 96  | % | No gene but pheno <sup>R</sup>      | Mut. but <u>pheno<sup>s</sup></u>          |  |  |
| STR                                   | 100 | % | No R isolates in dataset            |                                            |  |  |
| TET                                   | 98  | % | No gene but pheno <sup>R</sup>      | <i>tet</i> O but <u>pheno</u> <sup>S</sup> |  |  |
|                                       |     |   |                                     |                                            |  |  |





### Take-home messages

- DANMAP was created as part of a strategy to control AMU & AMR in humans and food animals in DK (e.g. to monitor effect of interventions, to set targets, etc.)
- WGS is already becoming more integrated in DANMAP
  - WGS-based prediction of AMR is realistic for some of the most important foodborne pathogens (*Salmonella* sp. and *C. jejuni* - 98.5 % geno-pheno concordance)
  - Cross-sector and interdisciplinary cooperation including integration of WGS data with other data sources can allow us to answer long-standing questions about AMR evolution and transmission









Past, present and future in the Danish antimicrobial resistance monitoring

# Thank you for your attention!

Valeria Bortolaia, DVM, PhD

vabo@food.dtu.dk