

Characterization of Clostridium perfringens strains for the investigation of food poisoning outbreaks in France

Abdelrahim Abakabir Mahamat

Anses – Food Safety Laboratory – Maisons-Alfort, France

Risks associated with Clostridium perfringens

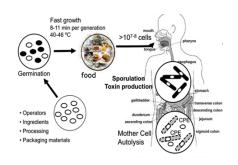
■ *C. perfringens*: Gram+, rod-shaped and anaerobe (wiegel et al. 2006)

spore-forming

Ubiquitous (McClane et al. 2001)

Pathologies

Gas gangrene



Enterotoxemia

Necrotic enteritis

Causative agent of human food poisoning outbreaks (McClane et al. 2013)

8 -12 h

✓ Caused by enterotoxin (CPE) producing strains (McClane et al. 2013)

Classification and toxins of *C. perfringens*

Current classification : 7 toxinotypes

Toxinotype	α-toxin (plc or cpa)	β-toxin (<i>cpb</i>)	ε-toxin (etx)	ι-toxin (iap and ibp)	CPE (cpe)	NetB (netB)
Α	+	-	-	-	-	-
В	+	+	+	-	-	-
C	+	+	-	-	±	-
D	+	-	+	-	±	-
E	+	-	-	+	±	-
F	+	-	-	-	+	-
G	+	-	-	-	-	+

(Rood et al. 2018)

Toxinotype F is associated to FPO

■ 22 virulence factors are now described in the scientific literature (Mathiew et al., 2013; Li et al.,

2013; Gohari et al., 2015)

Health impact of *C. perfringens* FPO

NATIONAL

top 4 causes of bacterial FPO

Pathogen	Confirmed	Suspected	Total
	295	779	1310
Salmonella B. cereus C. perfringens	89 47 34	32 217 49	121 264 83
S. cereus	19	308	327
Others*	106	173	279
Undetermined	1	1	236

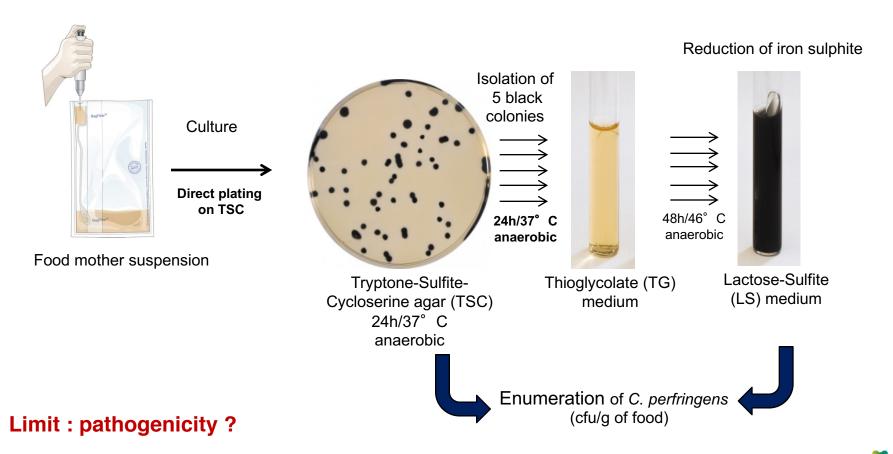
^{*} histamine, virus, Shigella, Campylobacter, autres...

- 108 reported FPO 38 confirmed
 70 suspected
- 2,324 people
- 27 hospitalizations

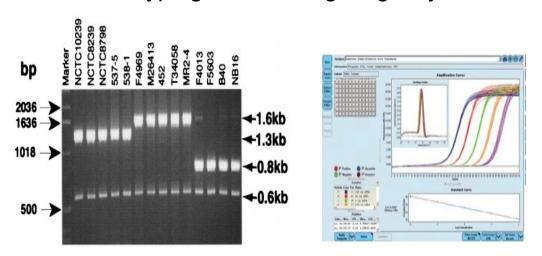
Declared by only 7 EU Member States

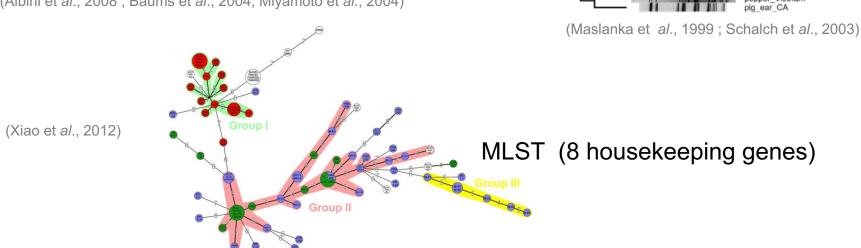
1,243 people, 38 hospitalizations (Santé publique France, 2019)

implicated foods



Official method for detection and enumeration of C. perfringens in FPO analysis


➤ NF EN ISO 7937 standard: horizontal method for the enumeration of *C. perfringens*

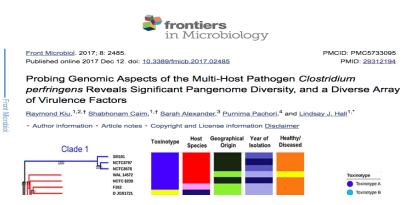

anses 😯

Molecular typing methods in use for *C. perfringens*

PCR-based typing method targeting major toxins encoding genes

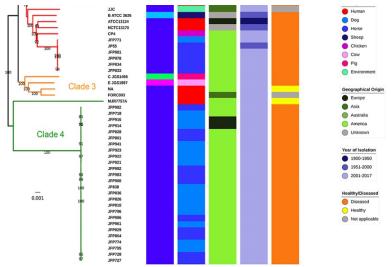
(Albini et al., 2008; Baums et al., 2004; Miyamoto et al., 2004)

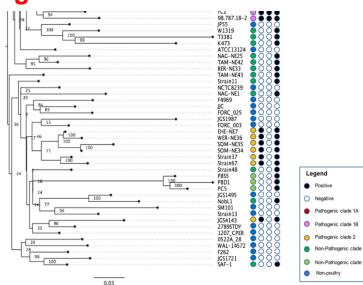
Lack of a standard typing method for C. perfringens


PFGE

ground_turkey_MD_2003 equine_TN_2004_1

fish Hong Kong

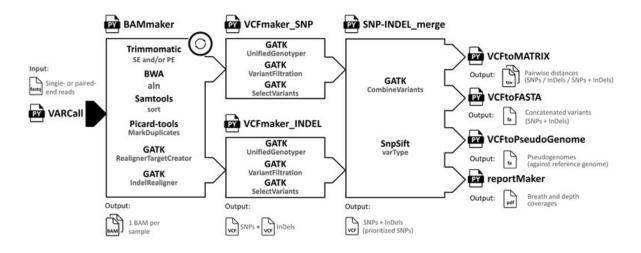

PFGE-Xbal


Recent studies used WGS for analysis of the genetic diversity of *C. perfringens* species

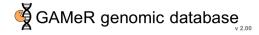
▶ Interesting approach to compare C. perfringens strains involved in FPO

An original collection of 141 Cp strains isolated from FPO related food samples

FBO	Year	Food vehicle	Human cases (n)	cfu/g	Recovered strain (n)	Other identified FBO bacteria	cfu/g
2207	2013	Vegetable	130	3.7E+06	1	-	-
2253	2013	Poultry	160	6.0E+06	1	-	-
435	2014	Other	22	3.0E+02	1	-	-
1601	2014	Other	15	3.5E+05	1	BC	2.7E+04
1622	2014	Other	21	1.1E+04	1	-	-
2370	2014	Pork	27	2.6E+03	1	-	-
529	2015	Vegetable	6	3.0E+01	2	BC	1.5E+03
538	2015	Poultry	38	1.5E+04	7	-	-
2291	2015	Pork	118	4.0E+06	5	-	-
2318	2015	Poultry	34	1.1E+03	1	-	-
2540	2015	Vegetable	9	4.0E+02	2	BC	8.0E+03
2606	2015	Vegetable	9	3.7E+02	5	BC	1.0E+05
0	2015	NK	5	NK	5	NK	NK
2727	2015	Pork	7	3.7E+03	3	-	-
2773	2015	Poultry	50	1.5E+07	5	-	-
2774	2015	Poultry	50	1.5E+07	5	-	-
2987	2015	Poultry	39	3.6E+04	8	-	-
2988	2015	Poultry	39	1.4E+02	4	BC	1.4E+05
3803	2015	Pork	4	1.3E+04	4	SCP	4.0E+02
3958	2015	Pork	NK	1.6E+02	5	-	-
3863	2015	Vegetable	20	2.2E+02	5	-	-
4068	2015	Other	2	4.0E+04	2	-	-
4092	2015	Beef	30	1.2E+02	4	-	-
4115	2015	Vegetable	2	3.6E+01	2	-	-
4127	2015	Pork	26	5.8E+05	4	-	-
4138	2016	Other	1	6.0E+02	3	-	-
370	2016	Vegetable	8	4.0E+01	1	BC	1.0E+03
490	2016	Poultry	40	7.0E+01	5	-	-
553	2016	NK [°]	4	8.0E+02	1	-	-
1781	2016	Vegetable	28	1.1E+05	5	-	-
1782	2016	Vegetable	28	4.0E+01	1	BC	5.5E+04
1923	2016	Vegetable	13	8.4E+04	5	-	-
3199	2016	Vegetable	5	4.0E+01	1	-	-
3566	2016	Vegetable	51	2.4E+06	5	-	-
4286	2016	Vegetable	2	4.0E+01	1	BC	4.0E+03
4430	2016	Beef	2	1.1E+03	5	-	-
4493	2017	Vegetable	2	3.6E+02	4	BC	1.5E+04
4755	2017	Vegetable	120	9.3E+02	5	-	-
274	2017	Beef	2	4.0E+02	1	-	-
759	2017	Beef	31	4.9E+06	5	-	-
762	2017	Beef	31	7.0E+01	4	_	-
1270	2017	Beef	41	1.9E+03	5	-	-



- ✓ Diversity of virulence gene profiles
- ✓ Genetic Relationship of FPO associated *C. perfringens* isolates
- ✓ Plasmids carriage of FPO isolates
- ✓ Relationship between genetic clades and Food vehicles



Genomic analysis of the collection

- DNA extraction of 141 isolates
- Sequencing (NextSeq) at ICM https://icm-institute.org
- In home pipeline for QC, assembly and SNP calling
- ✓ ARTWork (Durimel et al., 2017)
- ✓ iVARCall (Felten et al., 2017)

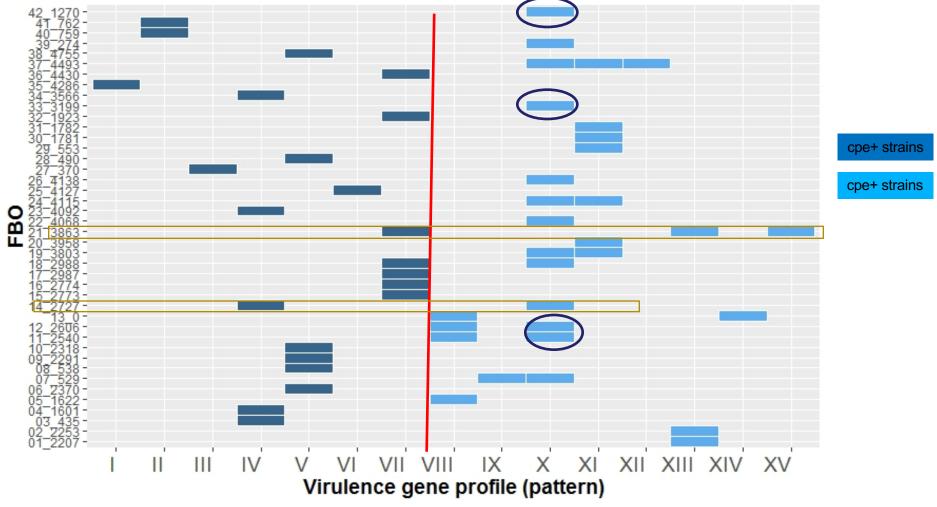
Storage of WGS data analyses and traceability

■ 24 virulence genes identified in the literature (Revitt-Mills et al., 2015)

detection by blast approach: Identity of 90 % and Coverage of 85 %

Toxinic profiles of 42 C. perfringens FPO

Toxin-	Number		Genes detected							
gene profile	of strains	cpb2	ia	ib	сре	pfoA	lam	nagH	nanl	nanJ
I	1	-	+	+	+	+	-	+	+	+
II	9	+	-	-	+	+	-	+	+	+
III	1	-	-	-	+	+	-	+	+	+
IV	12	-	-	-	+	-	-	+	-	+
V	24	-	-	-	+	-	-	+	-	-
VI	4	_	_	_	+	_	_	_	_	+
VII	29	-	-	-	+	-	-	-	-	-
VIII	7	+	-	-	-	+	-	+	+	+
IX	1	+	-	-	-	+	-	-	+	-
Х	40	-	-	-	-	+	-	+	+	+
ΧI	5	-	-	-	-	-	-	+	+	+
XII	1	-	-	-	-	+	-	-	+	-
XIII	5	-	-	-	-	-	-	+	-	-
XIV	1	+	-	-	-	+	+	+	+	+
XV	1	-	-	-	-	-	-	-	-	-


- 4 genes detected in all strains: cpa, colA, nanH and cadA
- 11 genes not detected: *cpb*, *etx*, *netBEFG*, *becAB*, *tpeL*, *cpd*, and *ureABC*

- 15 profiles identified
- More discriminant than current classification system
- F: 1 toxinotype vs 7
- 55% cpe+ and 45% cpe-

Some unexpected characteristics of food

samples contamination by C perfringens

Heterogeneous contamination of food samples, Contamination by only *cpe- C. perfringens*

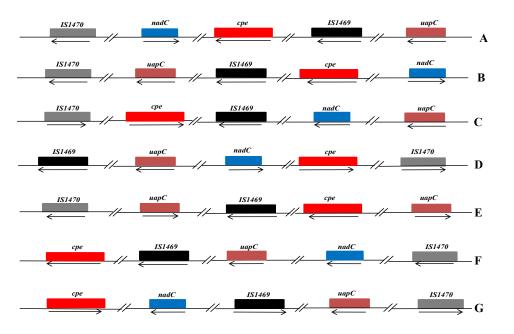
More than five isolates to be characterized

- ✓ Diversity of virulence gene profiles
- ✓ Genetic Relationship of FPO associated C. perfringens isolates
- ✓ Plasmids carriage of FPO isolates
- ✓ Relationship between genetic clades and Food vehicles

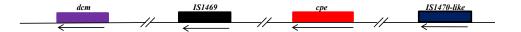
Phylogenomic analysis of FPO associated C. perfringens strains (core genome SNPs)

Tree scale: 0.001 cpe+ strains cpe-strains

Two main clades:


Clade 1 with 81 strains CPE+
Clade 2 with 40 strains CPF-

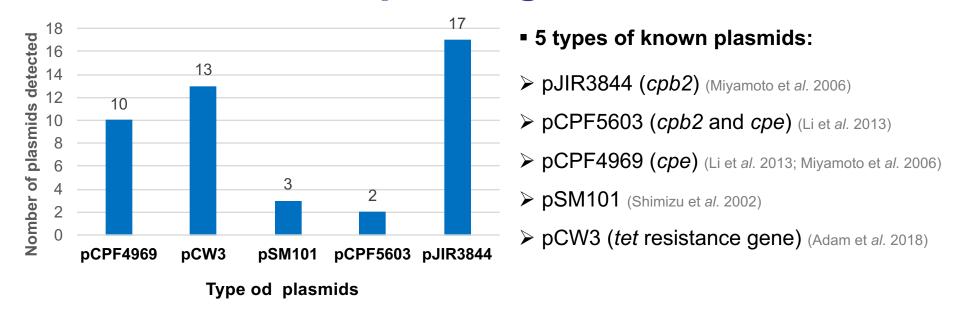
- Clade 1 more homogeneous than clade 2 (8k SNP vs 21k SNP)
- Different reservoirs for Clade 1 and clade 2 isolates ?
- Why are clade 1 isolates more prone to acquire cpe gene?


Mosaicity of chromosomal cpe gene organization

Organization of the chromosomal cpe locus observed in our collection

- A great diversity for the organization of the cpe locus (clade 1)
- Always flanked by IS sequences indicating cpe gene acquisition by horizontal transfer in clade 1 strains only

Organization plasmid cpe locus


What are the consequences on cpe expression?

- ✓ Diversity of virulence gene profiles
- ✓ Genetic Relationship of FPO associated *C. perfringens* isolates
- ✓ Plasmids carriage of FPO isolates
- ✓ Relationship between genetic clades and Food vehicles

Distinct plasmid carriage between clade 1 and clade 2 *C. perfringens* isolates

- 39 of 45 known plasmids were detected in clade 2 islates.
- 6 isolates of clade 1 contain plasmids pSM101 and pCW3
- Is pathogenicity in clade 2 linked to the presence of plasmids?
- Does clade 1 strains carry unknown plasmids ?
- What is the (genetic/environmental) reason for this distinct pattern?

- ✓ Diversity of virulence gene profiles
- ✓ Genetic Relationship of FPO associated *C. perfringens* isolate
- ✓ Plasmids carriage of FPO isolates
- ✓ Relationship between genetic clades and Food vehicles

Conclusion and perspectives

Genomic analysis provides a new picture of *C. perfringens* associated FPOs

- Are *cpe*+ positive strains the only responsible of enteropathogenicity? Role of *cpe* isolates in enteropathogenicity?
- Contaminations of food samples by distinct strains is common: A challenge for FPO investigation
- The ISO method for Cp detection is inadequate to characterize the contamination >
 Necessity to develop characterization method as complementary method
- Further on-field studies are required for an epidemiological insight on the origin of the two clades
- Enlarge the collection to further explore an eventual food matrices-genomic link
- Impact of genetic organization on CPE production ?

Unité SBCL

O Firmesse
JA Hennekinne
M Le Negrate
M Marault
D Merda
S Djellal
K Hadjab

Mission GAMer

MY Mistou A Felten N Radomski M Vila **Laboratoire Central des**

Services Vétérinaires (LCSV)

A Chamoin
A Mallet

Plateforme Identypath

S Delannoy P Fach

PhD student

Lena FRITSCH

