Profil toxicologique
du cis-CTAC
(n° CAS 51229-78-8)

Rapport d'expertise collective

Mai 2014 - Édition scientifique
Profil toxicologique
du cis-CTAC
(n° CAS 51229-78-8)

Rapport d'expertise collective

Mai 2014 Édition scientifique
Profil toxicologique
Cis-CTAC (n°CAS 51229-78-8)

Saisine n°2009-SA-0331

RAPPORT
d'expertise collective

Comité d’experts spécialisés
« Évaluation des risques liés aux substances chimiques »

Groupe de travail
« Perturbateurs endocriniens et reprotoxiques de catégorie 3 »

Décembre 2011
Mots clés

Cis-CTAC, effets santé, reprotoxicité, développement, fertilité, valeurs toxicologiques de référence
SOMMAIRE

Abréviations ... 4
Liste des tableaux .. 5

1. Contexte, objet et modalités de traitement de la saisine ... 6

2. Identification de la substance .. 7
 2.1 Généralités .. 7
 2.2 Propriétés physico-chimiques .. 9
 2.3 Réglementation et classification .. 9

3. Valeurs toxicologiques de référence existantes ... 11

4. Evaluations européennes ou internationales ... 12

5. Toxicocinétique .. 13

6. Toxicité ... 14
 6.1 Toxicité sur la reproduction et le développement .. 14
 6.2 Toxicité par doses répétées : subaigües ou subchroniques ... 16
 6.3 Toxicité chronique et cancérogénicité ... 16
 6.4 Autres données ... 17
 6.5 Mécanisme d'action ... 18

7. Résumé du profil toxicologique ... 19

8. Conclusion ... 21

9. Bibliographie .. 22

Annexe : ... 25
Abréviations

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Adaptation to Technical Progress</td>
</tr>
<tr>
<td>BKH</td>
<td>Consulting Engineers</td>
</tr>
<tr>
<td>BPL</td>
<td>Bonnes Pratiques de Laboratoire</td>
</tr>
<tr>
<td>BMD</td>
<td>Benchmark dose</td>
</tr>
<tr>
<td>Cal EPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CE</td>
<td>Commission européenne</td>
</tr>
<tr>
<td>DHI</td>
<td>BKH Consulting Engineers</td>
</tr>
<tr>
<td>DJA</td>
<td>Dose Journalière Admissible</td>
</tr>
<tr>
<td>ED</td>
<td>Effective Dose</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EINECS</td>
<td>European Inventory of Existing Commercial chemical Substances</td>
</tr>
<tr>
<td>ELINCS</td>
<td>European List of Notified Chemical Substances</td>
</tr>
<tr>
<td>ENEL</td>
<td>Estimated No-Observed-Effect Level</td>
</tr>
<tr>
<td>ER</td>
<td>Récepteur aux œstrogènes</td>
</tr>
<tr>
<td>ERα</td>
<td>Récepteur α aux œstrogènes (ou Estrogen Receptor α)</td>
</tr>
<tr>
<td>ERS</td>
<td>Evaluation des Risques Sanitaires</td>
</tr>
<tr>
<td>ERU</td>
<td>Excès de Risque Unitaire</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FI</td>
<td>Facteur d’Incertitude</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibitory Concentration 50</td>
</tr>
<tr>
<td>GD</td>
<td>Gestation Day (Jour de Gestation)</td>
</tr>
<tr>
<td>GT</td>
<td>Groupe de travail</td>
</tr>
<tr>
<td>LED</td>
<td>Lower bound of Effective dose</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest observed adverse effect level</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No observed adverse effect level</td>
</tr>
<tr>
<td>NOEL</td>
<td>No observed effect level</td>
</tr>
<tr>
<td>NTP</td>
<td>National Toxicology Program</td>
</tr>
<tr>
<td>OCDE</td>
<td>Organisation de Coopération et de Développement Économiques</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>RfD</td>
<td>Reference dose</td>
</tr>
<tr>
<td>SCCS</td>
<td>Scientific Committee on Consumer Safety</td>
</tr>
<tr>
<td>TP</td>
<td>Type de Produit</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
</tbody>
</table>
Liste des tableaux

Tableau 1 : Identité de la substance __ 7
Tableau 2 : Propriétés physico-chimiques du quaternium 15 _____________________________________ 9
Tableau 3 : Classification et limites de concentration __ 10
Tableau 4 : Types de produits pour lesquels l’usage doit être évalué dans le cadre de la directive biocides 98/8/CE ___ 10
Tableau 5 : Concentration maximale autorisée dans les cosmétiques selon le règlement (CE) n°1223/2009 ___ 10
1. Contexte, objet et modalités de traitement de la saisine

Stratégie de recherche

Afin d'évaluer la toxicité de cette substance, notamment sur la fonction de reproduction et la fonction endocrine, l’Anses a conduit une recherche bibliographique (cf. Annexe II, liste des sites consultés).

Les articles répertoriés ont été répartis de la manière suivante :

- articles rapportant les résultats d’études épidémiologiques ou des études de cas chez l’homme : « données humaines »
- articles rapportant les résultats d’études expérimentales réalisées sur l'animal de laboratoire et apportant des informations sur les effets potentiels de la substance sur la fonction de reproduction et la fonction endocrine (par exemple, études de reprotoxicité, de toxicité chronique ou subchronique, de cancérogenèse) : « étude in vivo »
- articles rapportant les résultats d’études in vitro (modèles cellulaires, organotypiques…) ou in silico (QSAR…) susceptibles d’apporter des informations sur le mécanisme d’action de la substance en lien avec les effets potentiels de la substance sur la fonction de reproduction et la fonction endocrine : « étude in vitro »

Les rapports d’« études in vivo » ont été analysés selon une grille de lecture commune préalablement établie et validée par le groupe de travail.
2. Identification de la substance

2.1 Généralités

<table>
<thead>
<tr>
<th>Tableau 1 : Identité de la substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICATION DE LA SUBSTANCE</td>
</tr>
<tr>
<td>Numéros CAS</td>
</tr>
<tr>
<td>Numéro CE</td>
</tr>
<tr>
<td>(EINECS)</td>
</tr>
<tr>
<td>Noms</td>
</tr>
<tr>
<td>Synonymes¹</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mélange des isomères cis/trans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Formule brute</td>
</tr>
</tbody>
</table>

¹ Les terminologies anglo-saxonne et française des synonymes ont été utilisées
Formule semi-développée
2.2 Propriétés physico-chimiques

Tableau 2 : Propriétés physico-chimiques du quaternium 15

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
<th>Valeur expérimentale ou modélisée</th>
<th>Sources²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forme physique (à T° ambiante)</td>
<td>Non précisé</td>
<td>Non précisé</td>
<td>Non précisé</td>
</tr>
<tr>
<td>Masse molaire (g.mol⁻¹)</td>
<td>251.2 g/mol</td>
<td>Non précisé</td>
<td>Dow Chemical, 2009</td>
</tr>
<tr>
<td>Point d'ébullition (°C)</td>
<td>ne peut pas être mesuré ; la substance se décompose avant ébullition</td>
<td>Non précisé</td>
<td>Dow Chemical, 2009</td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>La substance se décompose à 192°C avant fusion</td>
<td>Non précisé</td>
<td>Dow Chemical, 2009</td>
</tr>
<tr>
<td>Solubilité dans l'eau (g.L⁻¹)</td>
<td>Soluble dans l'eau de 10% à 50% dans eau distillée à 10, 20 et 30°C et à pH 5 et 9 à 20°C</td>
<td>Non précisé</td>
<td>Dow Chemical, 2009</td>
</tr>
<tr>
<td>Log Kow</td>
<td><-2 à 25°C</td>
<td>Non précisé</td>
<td>Dow Chemical, 2009</td>
</tr>
<tr>
<td>Koc (L.kg⁻¹)</td>
<td>Non précisé</td>
<td>Non précisé</td>
<td>Non précisé</td>
</tr>
</tbody>
</table>

2.3 Réglementation et classification

Classification : F; R11 - Repr. Cat. 3; R63 - Xn; R22 - Xi; R38 - R43 - N; R51-53 (31ème ATP)
Phrases S: S2, S7, S22, S33, S36/37, S61
Danger: F; Xn; N.
Rang ATP: 31

A noter que la classification Reprotoxique de catégorie 3 (actuelle catégorie 2) concerne la forme cis du 1-(3-Chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride.

Inscription ELINCS ou EINECS :
Substance inscrite à ELINCS (European List of Notified Chemical Substances).
Le quaternium 15 est un conservateur autorisé dans les produits cosmétiques (Annexe VI, entrée 31) à la concentration maximale de 0.2%.
Tableau 3 : Classification et limites de concentration

<table>
<thead>
<tr>
<th>Classification (règlement (CE) n°1272/2008)</th>
<th>Limites de concentrations spécifiques</th>
<th>Symboles de danger</th>
</tr>
</thead>
<tbody>
<tr>
<td>H228</td>
<td></td>
<td>GHS07</td>
</tr>
<tr>
<td>H302</td>
<td></td>
<td>GHS02</td>
</tr>
<tr>
<td>H315</td>
<td></td>
<td>GHS09</td>
</tr>
<tr>
<td>H317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H361d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H411</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification (Directive 67/548/CE)</th>
<th>Limites de concentrations spécifiques</th>
<th>Symboles de danger</th>
</tr>
</thead>
<tbody>
<tr>
<td>F; R11 - Repr. Cat. 3; R63 - Xn; R22 - Xi; R38 - R43 - N; R51-53 (31ème ATP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4 : Types de produits pour lesquels l’usage doit être évalué dans le cadre de la directive biocides 98/8/CE

<table>
<thead>
<tr>
<th>Groupe 2 Produits de protection</th>
<th>Types de produits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP9</td>
<td>Produits de protection des fibres, du cuir, du caoutchouc et des matériaux polymérés</td>
</tr>
<tr>
<td>TP12</td>
<td>Produits antimoisissures (antifongiques...)</td>
</tr>
</tbody>
</table>

Tableau 5 : Concentration maximale autorisée dans les cosmétiques selon le règlement (CE) n°1223/2009

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>CONCENTRATION MAXIMALE autorisée</th>
<th>LIMITATIONS ET EXIGENCES</th>
<th>CONDITIONS D'EMPLOI et avertissements à reprendre obligatoirement sur l’étiquetage</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNIUM-15</td>
<td>0.2%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3. Valeurs toxicologiques de référence existantes

Aucune information disponible
4. Evaluations européennes ou internationales

Dans le cadre des conservateurs autorisés par la Directive Cosmétique Annexe VI entrée 31 figure le mélange cis/trans de la méthénamine 3-chloroallylchloride (EC N° 223-805-0 ; CAS N° 4080-31-3) à la concentration maximale de 0.2%. Suite à la classification R3 du cis-CTAC, le Scientific Committee on Consumer Safety (SCCS) a été mandaté par la commission européenne pour évaluer le risqué lié à l'utilisation de ce conservateur dans les produits cosmétiques. Si la réponse du SCCS s'avérait favorable, l'entrée 31 de l'Annexe VI de la Directive Cosmétique serait modifiée et ne concernerait plus que la forme cis-CTAC et plus le mélange racémique.

Par ailleurs, dans le cadre du règlement 1451/2007 concernant la mise sur le marché des produits biocides, le Dowicil ® est évalué par la Pologne pour les TP 6, 9, 12 et 13. Ce dossier a été jugé recevable sous le nom « cis-CTAC ». Les rapports d'évaluation sont attendus pour le 1er mars 2011.
5. Toxicocinétique

L'absorption percutanée du **cis-CTAC** a été mesurée après application sur le dos de rat Fisher 344 pendant 48h d'une solution aqueuse à 1% ou 50% de cis-CTAC correspondant aux doses respectives de 5 et 75 mg/kg (3 rats par dose). L'absorption varie alors entre 0,38 et 2,0 % de la dose appliquée quelle que soit la quantité appliquée (Waechter et al., 1983). Une étude du métabolisme chez le rat après administration de **cis-CTAC** radioactif par voie orale et intra-veineuse montre un métabolisme rapide et une excrétion urinaire ou via l'air exhalé.

L'absorption percutanée du **cis/trans-CTAC** a été mesurée après application sur le dos de rat Fisher 344 pendant 48h à une dose de 5 mg/kg. Moins de 10% de la dose appliquée est absorbée. Une métabolisation complète et une excrétion rapide et complète est observée (Hansen et al., 2008). Dans cette étude, 4 groupes de 4 rats ont été aussi traités par voie orale pendant 14 jours et par voie iv à la dose de 5 et 75 mg/kg.

L'étude par voie orale a montré que 43 % de la dose administrée était excrétée dans les urines, 13% dans les fèces et 32% dans l'air exhalé. Ceci montre que la quasi-totalité de la dose administrée par cette voie a été absorbée. L'étude par intra-veineuse quand à elle a montré que 30 % de la dose administrée était excrétée dans les urines, 4% dans les fèces et 28% dans l'air exhalé.

Le profil métabolique après administration orale diffère de celui observée après administration cutanée (métabolites cis- et trans-chloroallyl amine détectés dans les urines dans les groupes exposés par voie orale mais pas par voie cutanée.

La valeur de 2% correspondant à la pénétration cutanée de l'isomère cis a été retenue par Dow Chemical. Le SCCS considère que les données ne sont pas suffisantes pour supporter cette valeur et qu'une nouvelle étude de pénétration cutanée devrait être réalisée (SCCS, 2011).
6. Toxicité

6.1 Toxicité sur la reproduction et le développement

Données animales

Plusieurs études de reprotoxicité ont été conduites avec le cis-CPAC ou le mélange cis/trans-CPAC chez le rat et le lapin, par voie orale ou cutanée. (John et al., 1982; Carney et Thorsud, 2005; Carney et al., 2006, 2008). Les grilles d’analyse de ces études sont jointes en annexe à ce rapport.

Développement prénatal :

Dans l’étude de toxicité pour le développement prénatal (OCDE 414) de John et al. (1982), des femelles rats Fisher ont été exposées par gavage au cis-CTAC pendant la gestation (J6 à J15) aux doses de 0, 5, 25 et 75 mg/kg/j.

Chez les mères, une diminution du poids associée à une baisse de la prise de nourriture a été observée aux 2 plus fortes doses. A la dose de 75 mg/kg/j, une augmentation du poids du foie a été rapportée. Un taux de résorption foetale plus élevé a été observé à cette dose.

Chez les F1, les effets suivants ont été observés :

- 75 mg/kg/j : augmentation de l’incidence de microptalmie (2% des foetus et 19% des portées) et d’anophtalmie; augmentation des délais d’ossification des vertèbres centrales et des sternèbres; baisse du poids des foetus,
- 25 mg/kg/j : augmentation de l’incidence de microptalmie (2% des foetus et 17% des portées) et anophtalmie; des anomalies majeures viscérales (absence du septum ventriculaire, fusion des artères carotidiennes, uretère dilaté, œdème sous-cutané) et osseuses (malformation des vertèbres cervicales) sont également observées sur certains foetus,
- 5 mg/kg/j : anophtalmie, micrognathie et polydactylie (2 rats dans 2 portées) ; 1 foetus est atteint d’anophtalmie et de micrognathie et l’autre de polydactylie. Un 3ème foetus mort in utero présentait exencéphalie

Une NOAEL maternelle de 5 mg/kg/j et une LOAEL de 5 mg/kg/j pour la toxicité sur le développement (anophtalmie, micrognathie et polydactylie) peuvent donc être déduites de cette étude.

Dans l’étude de toxicité pour le développement prénatal (OCDE 414) de Carney et Thorsud, (2005), des femelles rats Fisher ont été exposées par gavage au cis-CTAC pendant la gestation (J6 à J15) aux doses de 0, 25 et 75 mg/kg/j. Les effets suivants ont été observés :

- 25 mg/kg/j : anophtalmie droite et microptalmie gauche observées sur un foetus et microptalmie droite observée sur un autre foetus du même groupe (mais portée différente), incidence comparable aux témoins historiques ; diminution significative du poids des mères et de la consommation de nourriture,
- 75 mg/kg/j : microptalmie droite observée sur un foetus exposé et anophtalmie gauche observée sur un autre foetus du même groupe (mais portée différente), incidence comparable aux témoins historiques ; diminution significative du poids des mères et de la consommation de nourriture,
Une LOAEL maternelle de 25 mg/kg/j et une LOAEL de 25 mg/kg/j pour la toxicité sur le développement (anophtalmie, micrognathie et polydactylie) peuvent donc être déduites de cette étude.

Enfin dans une autre étude de toxicité pour le développement prénatal (OCDE 414) de Carney et al (2008), des femelles lapins New Zealand White ont été exposées par gavage au cis/trans-CTAC pendant la gestation (J7 à J27) aux doses de 0, 2.5, 8, 25 mg/kg/j. Le mélange était composé de 31,3% de l'isomère cis, 32,5% de l'isomère trans, 33,0% de bicarbonate de soude, 3,1% d'hexaméthylènetétramine et 0,1% d'une impureté non identifiée.

Une diminution du poids corporel et de la consommation de nourriture a été observée à la plus forte dose. Aucun effet reprotoxique n'a été rapporté.

Une NOAEL maternelle et pour la toxicité sur le développement de 8 mg/kg/j peuvent donc être déduites de cette étude. Etant donné que le mélange cis/trans contient 31,3% d'isomère cis, en faisant l'hypothèse que la toxicité est due exclusivement à cet isomère, le NOAEL corrigé pour cette étude serait de 2,5 mg/kg/j.

Reprotoxicité :

Dans une étude combinée de toxicité à doses répétées et de dépistage de la toxicité pour la reproduction et le développement (OCDE 422) de Carney et al. (2006), des femelles rats Sprague Dawley Crl :CD ont été exposées 6h/j par voie cutanée sous occlusion au mélange cis/trans-CTAC, 4 semaines avant l'accouplement, pendant toute la durée de l'accouplement, de la gestation et de la lactation aux doses de 0, 75, 225 et 750 mg/kg/j. Les males ont été exposés pendant 10 semaines (dont 4 semaines avant l'accouplement) et les F1 pendant 1 semaine après le sevrage. Le mélange était composé de 30,9% de l'isomère cis, 32,0% de l'isomère trans, 33,6% de bicarbonate de soude, 3,1% d'hexaméthylènetétramine et 0,4% d'eau.

Aucun effet sur le comportement en lien avec le traitement n'a été observé. Une légère diminution du poids des males et des femelles a été observée à la dose de 225 mg/kg/j (< 10% par rapport au groupe contrôle). Une diminution de la prise de nourriture a également été observée à cette dose.

Aucun effet sur la reproduction, la survie des F1, le sex ratio n'a été observé. Une légère diminution du poids des males et des femelles F1 a été observée à la dose de 225 mg/kg/j (< 15% par rapport au groupe contrôle) pendant la lactation (chez les mâles et femelles) et au sevrage (chez les femelles).

Les effets locaux suivants ont été observés :

- 750 mg/kg/j : irritation importante de la zone d'exposition avec retentissement sur l'état général conduisant à une euthanasie des animaux au 17ème jour,
- 225 mg/kg/j : irritation importante sur la zone d’exposition avec retentissement sur l’état général conduisant à une diminution du poids des mères et une baisse de la consommation de nourriture, ainsi qu’à une diminution du poids des fœtus issus de ce groupe,
- 75 mg/kg/j : irritation mineure

Un NOAEL maternelle et pour la toxicité sur le développement de 75 mg/kg/j peuvent donc être déduites de cette étude pour le mélange cis/trans. Le NOAEL corrigé pour une exposition de 24h serait d'environ 20 mg/kg/j. De plus, étant donné que le mélange cis/trans contient 30,9% d'isomère cis, en faisant l'hypothèse que la toxicité est due exclusivement à cet isomère, le NOAEL corrigé pour cette étude serait de 6 mg/kg/j.
Données humaines

Il n’y a pas de donnée disponible concernant des effets toxiques sur la reproduction chez l’Homme rapportée pour cette substance.

Une NOAEL maternelle de 5 mg/kg/j et une LOAEL de 5 mg/kg/j pour la toxicité sur le développement (anophtalmie, micrognathie et polydactylie) issues de l’étude de John et al. (1982) peuvent être utilisées pour l’évaluation des risques.

Données écotoxicologiques ou relatives aux effets observés sur la faune sauvage
Aucune information disponible

6.2 Toxicité par doses répétées : subaigües ou subchroniques

Données animales

Plusieurs études de toxicité subchronique par voie cutanée et par voie orale ont été réalisées sur diverses espèces animales avec le cis-CTAC et le mélange cis/trans CTAC (cf chapitre autres informations page 5). Ces études n’ont pas montré d’effet sur le système reproducteur.

Pour le cis/trans-CTAC, la plus faible NOAEL orale proposée par Dow Chemical est de 7.5 mg/kg/j basée sur une toxicité hépatique observée chez le rat et le chien après 90 jours d’exposition (Humiston et al., 1972; Schwetz et al., 1976).

Pour le cis/trans-CTAC, la plus faible NOAEL cutanée proposée par Dow Chemical est de 1200 mg/kg/j correspondant à la plus forte dose testée chez la souris pendant 90 jours d’exposition (3j/semaine, 6h/jours) (Quast et al., 1996). La NOAEL ajustée est d’environ 130 mg/kg/j (7 jours/semaine ; 24h/jour).

Pour le cis -CTAC, une NOAEL cutanée de 25 mg/kg/j est proposée par Dow Chemical sur la base d’une une irritation locale avec un retentissement sur l’état général, chez des lapins traités pendant 30 jours d’exposition (5j/semaine, 6h/jours) (Lockwood et al., 1978). Une baisse de la consommation de nourriture et du poids du foie a été observée à 50 et 100mg/kg/j. La NOAEL ajustée est d’environ 18 mg/kg/j (7 jours/semaine).

Une NOAEL de 31.3 mg/kg/j (dose la plus élevée testée) peut être déduite d’une autre étude de toxicité subchronique, au cours de laquelle des lapins ont été exposés pendant 91 jours par voie cutanée, 5 jours par semaine. La NOAEL ajustée est de 22.5 mg/kg pc/j (7 jours/semaine) (McCollister, 1969).

6.3 Toxicité chronique et cancérогénicité

Données animales
Aucune étude de toxicité chronique n’a été recensée.
Aucune étude de cancérogenèse n’a été recensée.

6.4 Autres données

Génotoxicité

La génotoxicité du CTAC a été étudiée *in vitro* et *in vivo* :

<table>
<thead>
<tr>
<th>Nature du test</th>
<th>Isomère CTAC</th>
<th>résultat</th>
<th>référence</th>
<th>commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation réverse sur bactéries</td>
<td>Cis-CTAC</td>
<td>Positif avec et sans S9</td>
<td>Kuramochi M, 1994 a</td>
<td>Pas OCDE, Pas BPL</td>
</tr>
<tr>
<td>Aberration chromosomiques sur cellules de mammifères (fibroblastes)</td>
<td>Cis-CTAC</td>
<td>Positif avec et sans S9 (clastogène)</td>
<td>Kuramochi M, 1994 b</td>
<td>Pas OCDE, Pas BPL</td>
</tr>
<tr>
<td>Mutation génique sur cellules de mammifères</td>
<td>Cis-CTAC</td>
<td>Négatif sans S9 Positif avec S9</td>
<td>Linscombe VA, 1988</td>
<td>Pas OCDE, Pas BPL</td>
</tr>
<tr>
<td>Aberration chromosomiques sur cellules de mammifères (lymphocytes)</td>
<td>Cis-CTAC</td>
<td>Négatif sans S9 Négatif avec S9</td>
<td>Murli H, 1994</td>
<td>Pas OCDE, Pas BPL</td>
</tr>
<tr>
<td>Synthèse non programmée de l’ADN in vitro</td>
<td>Cis-CTAC</td>
<td>Négatif</td>
<td>Domoradzki JY, 1981</td>
<td>Pas OCDE, Pas BPL</td>
</tr>
<tr>
<td>Micronoyau in vivo</td>
<td>Cis-CTAC</td>
<td>Négatif</td>
<td>Day SJ, 2000</td>
<td>OCDE, 474,</td>
</tr>
<tr>
<td>Synthèse non programmée de l’ADN in vitro</td>
<td>Cis-CTAC</td>
<td>Négatif</td>
<td>Cifone MA, 2002</td>
<td>OCDE 486</td>
</tr>
</tbody>
</table>

6.5 Mécanisme d'action

Aucune donnée sur le mécanisme d'action n'a été retrouvée.
7. Résumé du profil toxicologique

Le quaternium 15 est un mélange d’isomères cis et trans, l’isomère cis étant la forme prédominante et la forme trans étant présente au titre d’impureté.

Dans le cadre des conservateurs autorisés par la Directive Cosmétique Annexe VI entrée 31 figure le mélange cis/trans de la méthénamine 3-chloroallylchloride (EC N° 223-805-0 ; CAS N° 4080-31-3) à la concentration maximale de 0.2%. Suite à la classification R3 du cis-CTAC, le Scientific Committee on Consumer Safety (SCCS) a été mandaté par la commission européenne pour évaluer le risqué lié à l’utilisation de ce conservateur dans les produits cosmétiques. L’opinion adoptée par le SCCS lors de sa réunion du 22 mars 2011 est disponible en ligne : http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_053.pdf. Le profil toxicologique du quaternium 15 s’appuie sur cette opinion; seuls les résumés des études sont repris dans le document du SCCS.

Plusieurs études ont été réalisées avec le mélange cis-/ trans- alors que seule la forme cis est utilisée dans les produits destinés au public et est classée reprotoxique (catégorie 2 selon le nouveau règlement CLP). En conséquence les données issues des études sur le mélange ne peuvent pas être utilisées pour l’évaluation quantitative des risques mais peuvent servir de complément aux études réalisées sur l’isomère cis.

Le quaternium 15 est bien absorbé par voie orale et une pénétration de 100% par cette voie pourra être retenue pour l’évaluation des risques. Une seule étude de pénétration cutanée in vivo chez le rat, non conforme à la ligne directrice OCDE a montré une pénétration de 2% environ. Cette valeur ne peut être utilisée en tant que telle, d’autant plus qu’une autre étude in vivo réalisée sur le mélange cis-/ trans a conduit à une pénétration cutanée de 10%. Par conséquent, dans l’attente de données plus fiables, la valeur de 10% peut être retenue pour l’ERS par voie cutanée.

Une étude sur 90 jours par voie orale sur le mélange racémique conduit à une LOAEL de 7.5 mg/kg pc/j basée sur des modifications de paramètres biochimiques ou hémalogiques. Cette valeur ne peut pas être directement utilisée pour l’évaluation du risque sur la santé du quaternium 15.

Deux études de toxicité sur le développement par voie orale chez le rat ont été conduites avec l’isomère cis-CTAC. Des malformations ont été observées chez les fœtus (anomalies au niveau oculaires : microphthalmie, anophthalmie ; anomalies viscérales et malformations osseuses). Une LOAEL pour les effets sur le développement de 5 mg/kg pc/j peut être déduite de ces études.

Aucune étude de fertilité sur 2 générations n’a été recensée.

2 études de toxicité subchronique par voie cutanée ont été conduites avec l’isomère cis chez le rat. Une NOAEL de 18 mg/kg pc/j basée sur une diminution de la prise de nourriture et du poids du foie peut être dérivée de ces études.

Le quaternium 15 n’est pas considéré génotoxique in vivo.
Tableau récapitulatif des NOAELs toxicité sur la reproduction

<table>
<thead>
<tr>
<th>Type d’effet</th>
<th>Conditions d’exposition3 (voie, durée du traitement, période d’exposition)</th>
<th>NOAEL ou LOAEL /espèce</th>
<th>Nature des effets, type d’étude4</th>
<th>Période d’exposition humaine correspondante</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développement in utero</td>
<td>voie orale, F0 : Femelles pendant gestation : J6 à J15</td>
<td>LOAEL : 5 mg/kg pc/j, rat</td>
<td>Malformations (anomalies oculaires, faciales et squelettiques)</td>
<td>Femmes enceintes</td>
<td>(John et al., 1982)</td>
</tr>
<tr>
<td>Développement postnatal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicité générale</td>
<td>Voie cutanée : 30 jours, 5jours/sem, 6h/jour</td>
<td>NOAEL : 25 mg/kg/j, lapin</td>
<td>Diminution prise nourriture et du poids du foie à 50 et 100 mg/kg/j. Irritation locale observée à toutes les doses testées (irritation minimal à 25mg/Kg/j).</td>
<td>Adultes</td>
<td>(Lockwood et al., 1978)</td>
</tr>
<tr>
<td>Marqueurs de perturbation endocrinienne5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Mentionner la voie d’administration concernée : Orale, sous-cutanée, respiratoire

4 Renseigner l’effet critique identifié pour une période d’exposition donnée : atteinte testiculaire, embryotoxicité avec ou sans toxicité maternelle, foetotoxicité avec ou sans toxicité maternelle, effet sur le développement post-natal précoce ou pré-pubertaire avec ou sans toxicité maternelle

5 Prise en compte de résultats expérimentaux in-vivo : modifications des taux de FSH, LH, SHBG, testostérone, inhibine, index androgène libre, InsL3, de la distance anogénitale et des résultats tels que le test de Hesberger ou test utérotrophique et de résultat de test in-vitro (test de liaison à différents type de récepteurs aux estrogènes, PPAR α/β/...).
8. Conclusion

<table>
<thead>
<tr>
<th>Conditions d'exposition (voie, durée du traitement, période d'exposition)</th>
<th>type d'effet</th>
<th>NOAEL ou LOAEL/espèce</th>
<th>Nature d'effet</th>
<th>Période d'exposition humaine correspondante</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>voie orale, F0 : Femelles pendant gestation : J6 à J15</td>
<td>Développement in utero</td>
<td>LOAEL : 5 mg/kg po/j, rat</td>
<td>Malformations (anomalies oculaires, faciales et squelettiques)</td>
<td>Femmes enceintes</td>
<td>(John et al., 1982)</td>
</tr>
<tr>
<td>Voie cutanée 30 jours, 5jours/sem, 6h/jour</td>
<td>Toxicité générale</td>
<td>NOAEL : 25 mg/kg/j, lapin</td>
<td>Diminution prise nourriture et du poids du foie à 50 et 100 mg/kg/j. Irritation locale observée à toutes les doses testées (irritation minimal à 25mg/Kg/j).</td>
<td>Adultes</td>
<td>(Lockwood et al., 1978)</td>
</tr>
</tbody>
</table>

Date de validation du rapport d'expertise collective par le groupe de travail :
18/11/2011

Date de validation du rapport d'expertise collective par le comité d'experts spécialisé :
08/12/2011
9. Bibliographie

Cifone, M.A. (2002). In vivo/In vitro Unscheduled DNA Synthesis in Rat Primary Hepatocyte Cultures at Two Timepoints with a Dose Range-finding Assay with Cis CTAC. Covance Laboratories, INC. The Dow Chemical Company, Report No. DR-0026-3150-064

SCCS (2011), opinion on quaternium 15 (cis-isomer), COLIPA n° 63 (SCCS/1344/10).

ANNEXES
Annexe :

Annexe I : Bases de données consultées lors de l’élaboration de cette synthèse

Mots clefs utilisés :
Quaternium 15, CAS N° 51229-78-8

Date de recherche : Février 2010

Bases de données consultées :
- TOXNET
- ChemIDplus
- Toxline
- INCHEN : http://www.inchem.org/index.html
- European Chemicals Bureau: EURAR /ESIS
- Fiches du CSST (français) : www.reptox.csst.qc.ca/
- OCDE-SIDS initial assessment profile :
 http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html et
 http://webnet3.oecd.org/echemportal/et
- EPA
- IARC
- NTP
- DART
- CDC Chemical Emergency Response and
- ATSDR Agency for toxic substances and diseases registry.
- CDC - Chemical Emergency Response, Immediately Dangerous to Life or Health
 Concentrations (IDLH) and Criteria documents
- CCHST Canadian Center for Occupational Health and Safety (French);
- INRS Institut national de recherche et de sécurité. Fiches toxicologiques
- NICNAS Australian government - National Industrial Chemicals Notification and Assessment
 Scheme, chemical assessment reports
- PUBMED
- Toxicity Profiles of the American Risk Assessment Information System (RAIS) - Programme
 d’évaluation des substances d’intérêt prioritaire de Santé Canada : http://risk.lsd.ornl.gov/
- Chemfinder
- EPA - Integrated Risk Information System (IRIS) Toxicological reviews
- ATSDR Agency for toxic substances and diseases registry. Toxicological Profiles
- OEHHA
- Santé Canada
- RIVM
- JECFA (ADI/ TDI)
- OMS
- FURETOX.
- JMPR (Joint Meeting on Pesticides Residues)
- EPA Pesticide registration status (fact sheets)
- AGRITOX (AFSSA, DIVE)
- SCCS (Scientific Committee on Consumer Safety).
Note