

Exposome et santé publique De la recherche à l'expertise

Mardi 30 novembre 2021 • Maison de la RATP - Paris 12e

Déclinaison du concept de 'something from nothing' sur le modèle de culture organotypique de testicules fœtaux humains

Séverine Mazaud-Guittot, chargée de recherche,

UMR 1085, Inserm / Université de Rennes1 / EHESP, IRSET. Rennes

Thèse de Pierre Gaudriault, sous la direction de Bernard Jégou.

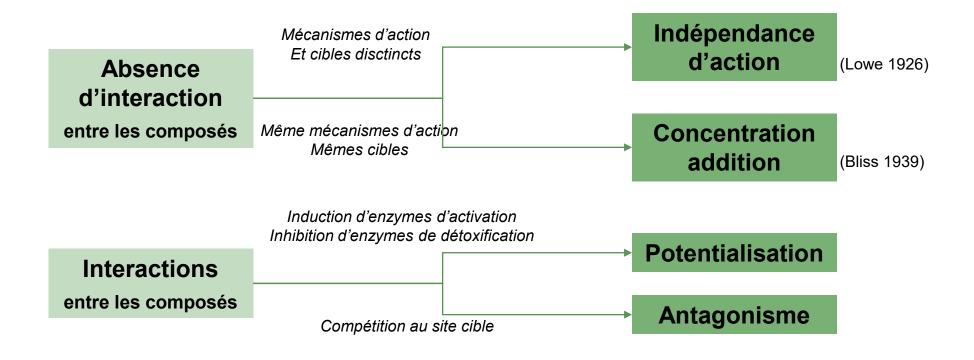
Du criblage de composés en mono-exposition à l'étude de mélanges

Le testicule fœtal humain: chef d'orchestre de la masculinisation Organe complexe, hétérogène, en cours de différenciation

Reproduire les mélanges de la « vraie vie »

Comparer avec des conditions témoins et les composés seuls

Autant de *vraies vies* que d'individus Combien de composés ? Quelles concentrations ? Données de l'exposome fœtal en 2012····

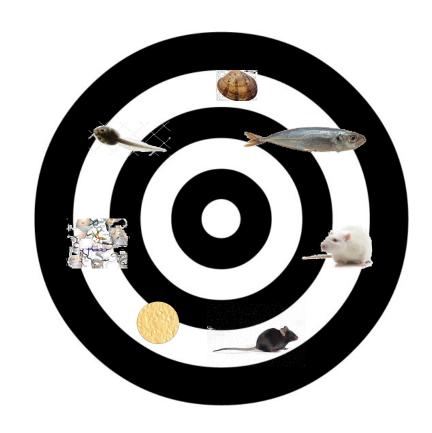


Tester des modèles théoriques d'effets de mélanges Comparer des modèles prédits avec des résultats d'expériences

La science des mélanges en toxicologie

(d'après Heys KA et al 2016, doi.org/10.1039/C6RA05406D)

Du concept de mélange au « Something from nothing »


Environ. Sci. Technol. 2002, 36, 1751-1756

Something from "Nothing" — Eight Weak Estrogenic Chemicals Combined at Concentrations below NOECs Produce Significant Mixture Effects

ELISABETE SILVA, NISSANKA RAJAPAKSE, AND ANDREAS KORTENKAMP*

Yeast estrogen screen

- Lignées cellulaires animales
- Mollusques
- Poissons
- Rats
- Souris
- Amphibiens
- Lignées cellulairesHumaines

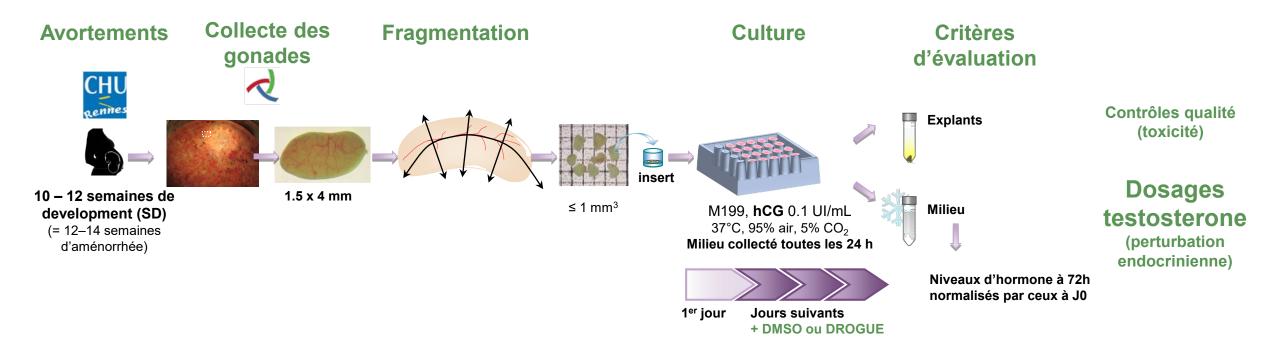
Qu'en est-il de l'Homme?

Hypothèse de travail: Addition des concentrations

Plusieurs produits chimiques présentant une activité anti-androgénique produiront-ils des effets conjoints même s'ils sont combinés à des concentrations qui elles-mêmes n'induisent pas de réponses observables?

A 10-wM
$$\Rightarrow$$
 pas d' effet
B 10-xM \Rightarrow pas d' effet
C 10-yM \Rightarrow pas d' effet
D 10-zM \Rightarrow pas d' effet
 \Rightarrow effet ???

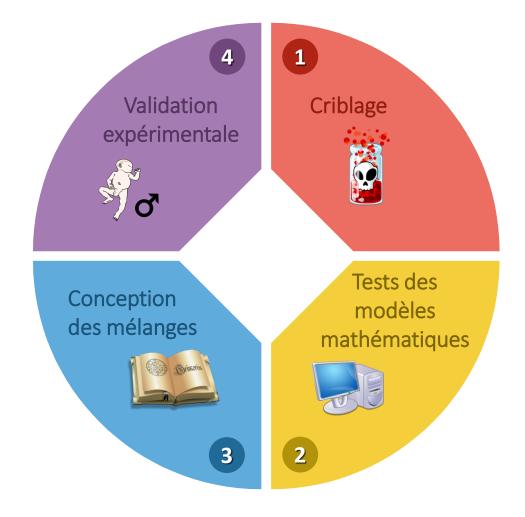
$$EDx_{mixture} = \left(\frac{p_1}{EDx_1} + \frac{p_2}{EDx_2} + \frac{p_n}{EDx_n}\right)^{-1}$$


$$EDx \text{ mixture= effet du mélange}$$

$$EDx 1 = \text{effet du composé 1}$$

$$p1 = \text{proportion du composé 1}$$

Modèle expérimental: testicule fœtal humain Culture organotypique



> Choix des composés chimiques

- Des propriétés anti-androgéniques avérées dans des lignées cellulaires, chez l'animal
- Association entre consommation pendant la grossesse et survenue de malformations du tractus uro-génital mâle.

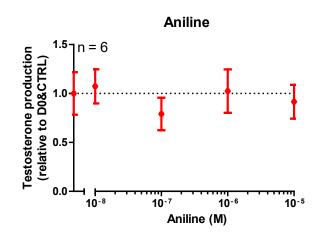


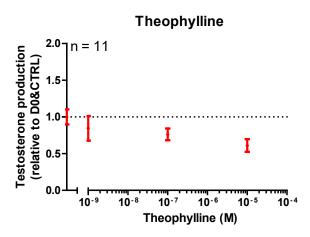
Stratégie expérimentale

Etape 1

Etape 1: les 27 candidats

Group	Chemical		
	Aspirin		
	Clomiphene		
	Ibuprofene		
Mádicomonto	Indomethacine		
Médicaments	Ketoconazole		
	Paracetamol		
	Theophylline		
	Valproic acid		


Group	Chemical		
Polluants industriels	Aniline		
	Bisphenol A		
	Bisphenol B		
	Bisphenol E		
	Bisphenol F		
	Bisphenol S		


Group	Chemical			
	Caffeine			
	Ethanol			
Produits socio-	Paraxanthine (caffeine metabolite)			
culturels	Theobromine (caffeine metabolite)			
	Theophylline (caffeine metabolite)			
	1,3,7 Trimethyluric acid (caffeine metabolite)			

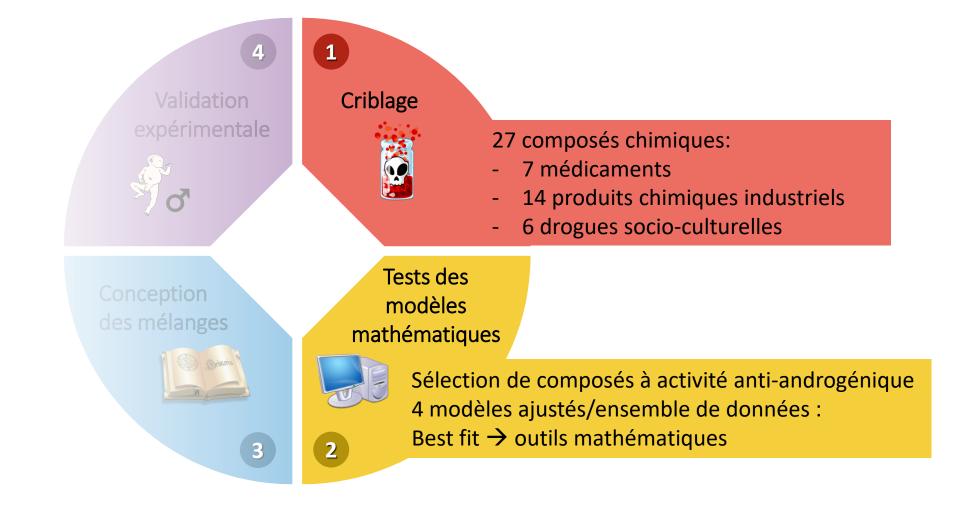

Group	Chemical		
	Atrazine		
	Bitertanol		
Description of	Chlordecone		
Pesticides,	Glyphosate		
herbicides,	Imazalil		
fongicides	Orto-phenylphenol		
	Prochloraz		
	Propiconazole		

Etape 1: Etablissement des courbes concentration-niveaux de testostérone pour chaque composé

Norm-androgénique

Anti-androgénique modéré

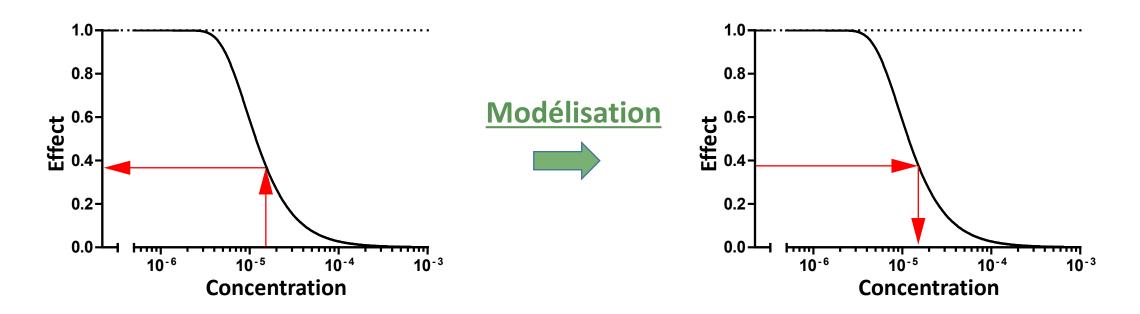
Anti-androgénique complet



27 composés testés, 3 types de réponses,

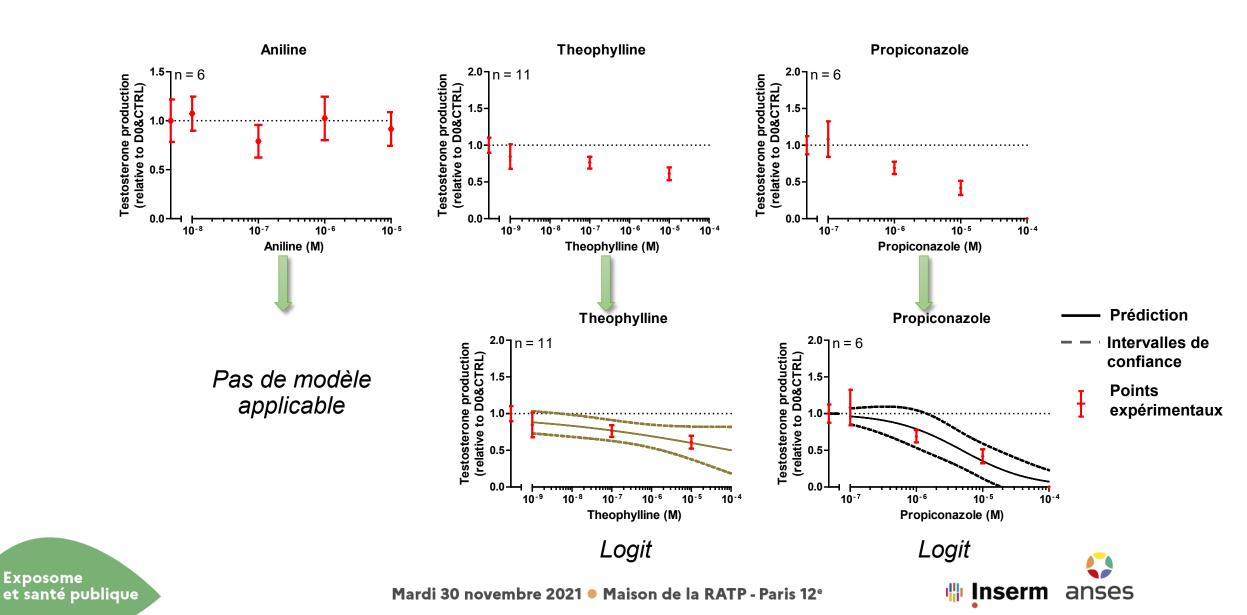
11 composés anti-androgéniques

Etape 2



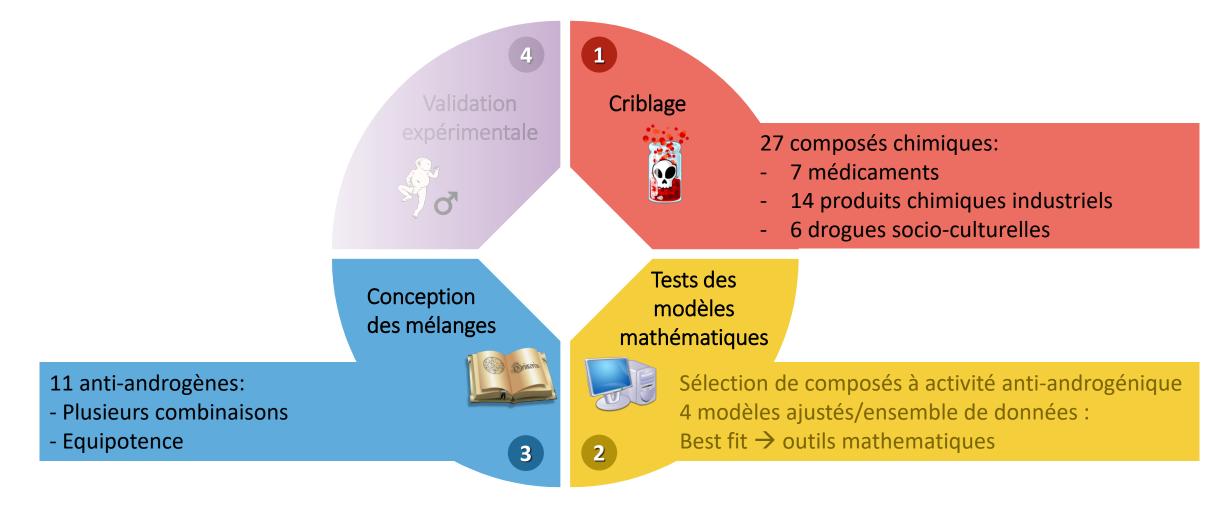
Etape 2: Modélisation mathématique pour chaque composé

Quelle concentration x d'un produit chimique produit l'effet y = f(x)


L'effet considéré y = f(x) est produit par quelle concentration de x?

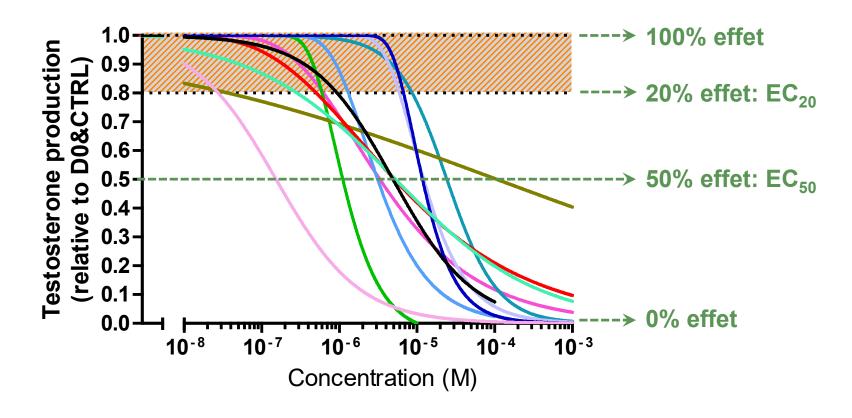
4 modèles systématiquement testés (Logit, Weibull, Logit généralisé I et II)

Etape 2: Modélisation mathématique pour chaque composé



Etape 2: Modélisation mathématique pour chaque composé

	Modèle		Mixture composition and fraction of individual compounds				
Chemical	Model	EC ₅₀ (M)	Toxicity	Mixture	Mixture	Mixture	Mixture
		-50 (/	(M)		II	III	IV
Ketoconazole	Weibull	9.97 x 10 ⁻⁷	10 ⁻⁵	0.20	0.20	0.025	
BPA	Weibull	6.07 x 10 ⁻⁶	>10 ⁻⁵	0.45	0.45	0.053	0.057
Valproic acid	Weibull	4.71 x 10 ⁻⁶	>10 ⁻⁵	0.16	0.30	0.021	
Clomiphene	Logit	5.72 x 10 ⁻⁶	>10 ⁻⁵	0.19		0.026	
Theophylline	Logit	5.04 x 10 ⁻⁵	10 ⁻⁵		0.05	0.002	2.21x10 ⁻⁵
BPS	Weibull	1.72 x 10 ⁻⁵	10 ⁻⁴			0.355	0.302
Chlordecone	Logit	1.66 x 10 ⁻⁵	10 ⁻⁴			0.243	0.277
Imazalil	Logit	9.19 x 10 ⁻⁶	10-4			0.275	0.337
Bitertanol	Logit	1.30 x 10 ⁻⁵	10 ⁻⁵				0.003
Prochloraz	Logit	2.23 x 10 ⁻⁷	10 ⁻⁵				0.001
Propiconazole	Logit	5.18 x 10 ⁻⁶	10 ⁻⁵				0.023



Etape 3

Etape 3 : Détermination des EC₅₀ et EC₂₀: Equipotence

Les ratios de composés chimiques dans le mélange ont été determinés sur le **principe de l'équipotence à l'EC50**.

$$P_i = \frac{ECx_i}{\sum_{i=1}^{n} ECx_i}$$

Etape 3 : Conception de 4 mélanges

	Modèle		Mixture composition and fraction of individual compounds				
Chemical	Model	EC ₅₀ (M)	Toxicity (M)	Mixture I	Mixture II	Mixture III	Mixture IV
Ketoconazole	Weibull	9.97 x 10 ⁻⁷	10 ⁻⁵	0.20	0.20	0.025	
BPA	Weibull	6.07 x 10 ⁻⁶	>10 ⁻⁵	0.45	0.45	0.053	0.057
Valproic acid	Weibull	4.71 x 10 ⁻⁶	>10 ⁻⁵	0.16	0.30	0.021	
Clomiphene	Logit	5.72 x 10 ⁻⁶	>10 ⁻⁵	0.19		0.026	
Theophylline	Logit	5.04 x 10 ⁻⁵	10 ⁻⁵		0.05	0.002	2.21x10 ⁻⁵
BPS	Weibull	1.72 x 10 ⁻⁵	10 ⁻⁴			0.355	0.302
Chlordecone	Logit	1.66 x 10 ⁻⁵	10-4			0.243	0.277
Imazalil	Logit	9.19 x 10 ⁻⁶	10-4			0.275	0.337
Bitertanol	Logit	1.30 x 10 ⁻⁵	10 ⁻⁵				0.003
Prochloraz	Logit	2.23 x 10 ⁻⁷	10-5				0.001
Propiconazole	Logit	5.18 x 10 ⁻⁶	10 -5				0.023

Mixture I: ketoconazole, BPA, valproic acid, clomiphene

Mixture II: ketoconazole, BPA, valproic acid, theophylline

Mixture III: ketoconazole, BPA, valproic acid, clomiphene, theophylline, BPS, chlordecone, imazalil

Mixture IV: BPA, theophylline, BPS, chlordecone, imazalil, bitertanol, prochloraz, propiconazole

Etape 3 : Prédiction des effets des mélanges (Additivité)

4 component mixtures

Output

Pour chaque mélange, calcul des courbes concentration-réponse selon le principe d'additivité des concentrations

Etape 4

Cultures d'explants de testicules fœtaux ex vivo:

- Comparaison observation & prédiction

11 anti-androgènes:

- Equipotence

- Plusieurs combinaisons

Validation expérimentale

Conception

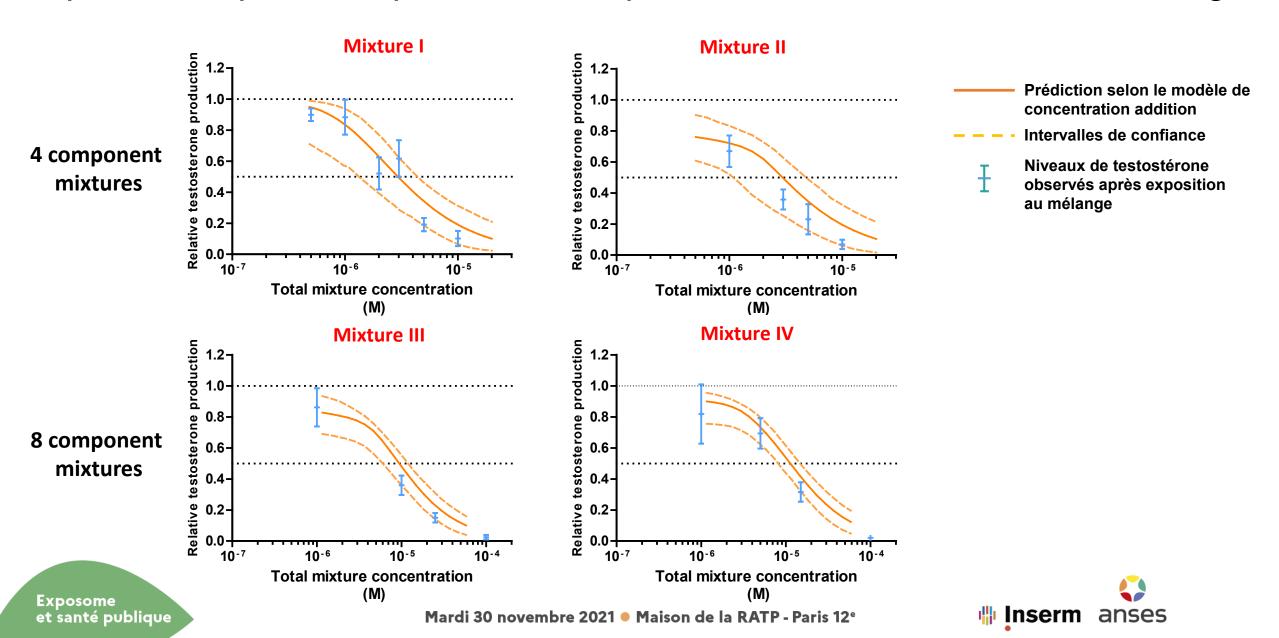
3

des mélanges

27 composés chimiques:

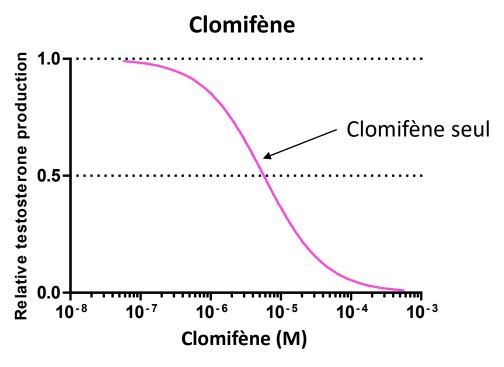
- 7 médicaments
- 14 produits chimiques industriels
- 6 drogues socio-culturelles

Tests des modèles mathématiques



Criblage

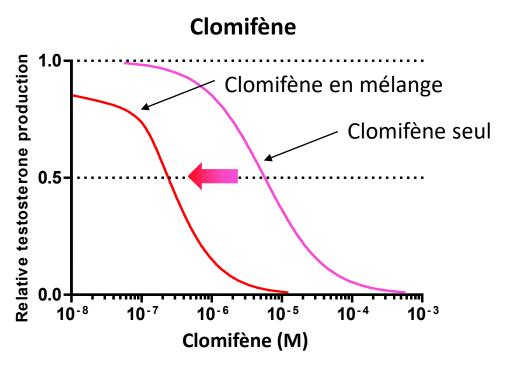
Sélection de composés à activité anti-androgénique 4 modèles ajustés/ensemble de données : Best fit → outils mathematiques



Etape 4: Comparaison prédiction / expérimentation des effets des mélanges

Etape 4: something from nothing?

Question : Quelle est la concentration de clomifène en mélange nécessaire pour produire le même effet Y que le clomifène seul ?



- Proportion de clomifène dans le mélange : 0.026
- La concentration [Mix] de mélange produit un effet Y

Etape 4: Conséquences

Question : Quelle est la concentration de clomifène en mélange nécessaire pour produire le même effet Y que le clomifène seul ?

- Proportion de clomifène dans le mélange : 0.026
- La concentration [Mix] de mélange produit un effet Y
- ⇒ La concentration [Clom] de clomifène nécessaire pour produire l'effet Y en mélange: [Clom] = 0.026 x [Mix]

Etape 4: Conséquences

Conclusions

- ✓ Les anti-androgènes peuvent agir de façon additive sur le testicule fœtal humain;
- Les effets combinés sont prédictibles;
- ✓ Evaluation de la potentialisation des composés chimiques individuels.

Conclusions

- ✓ Evaluation de la potentialisation des composés chimiques individuels.
- ✓ 27 → 52 composés chimiques ... vs les milliers de composés chimiques de l'environnement
- ✓ Conception de mélanges plus réalistes: *Exposome fœtal humain*
 - ... banque d'organes HuDeCA
- ✓ Mécanismes d'action et **Impactome**

✓ Évaluation entièrement prédictive des risques liés aux mélanges à l'échelle de la population

Environ Health Perspect; DOI:10.1289/EHP1014

Endocrine Disruption in Human Fetal Testis Explants by Individual and Combined Exposures to Selected Pharmaceuticals, Pesticides, and Environmental Pollutants

Pierre Gaudriault, ^{1,2} Séverine Mazaud-Guittot, ^{1,2} Vincent Lavoué, ³ Isabelle Coiffec, ^{1,2} Laurianne Lesné, ^{1,2} Nathalie Dejucq-Rainsford, ^{1,2} Martin Scholze, ⁴ Andreas Kortenkamp, ⁴ and Bernard Jégou^{1,2,5}

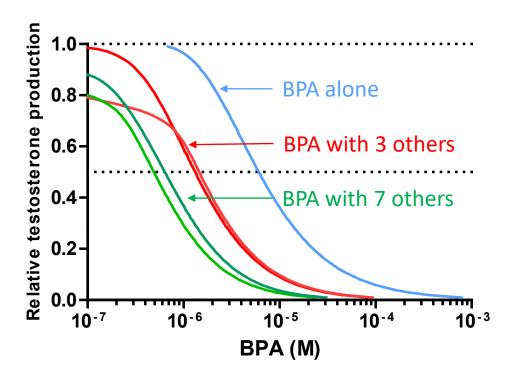
Pierre Gaudriault

Isabelle Coiffec-Dorval Christèle Desdoits-Lethimonier Laurianne Lesné Nathalie Dejucq-Rainsford **Bernard Jégou**

Dr. Vincent Lavoué Infirmières, sagesfemmes du centre

Les femmes qui ont donné leur consentement.

Andreas Kortenkamp Martin Scholze



Etape 4: Conséquences

Question : Est-ce un phénomène général (variation du nombre de composés et de la composition d'un mélange) ?

Condition	EC ₅₀ (M)
BPA alone	6.07 x 10 ⁻⁶
BPA in Mix I	1.32 x 10 ⁻⁶
BPA in Mix II	1.45 x 10 ⁻⁶
BPA in Mix III	4.91 x 10 ⁻⁷
BPA in Mix IV	6.37 x 10 ⁻⁷
	BPA alone BPA in Mix I BPA in Mix II BPA in Mix III

Potentialisation by factor 10 when co-exposed to 7 other chemical
 Same concentration produces greater effect

Etape 3 : Détermination des EC₅₀ et EC₂₀

	Modèle		Mixture composition and fraction of individual compounds				
Chemical	Model	EC ₅₀ (M)	Toxicity	Mixture	Mixture	Mixture	Mixture
		30 \ ,	(M)	ı	II	III	IV
Ketoconazole	Weibull	9.97 x 10 ⁻⁷	10 ⁻⁵	0.20	0.20	0.025	
BPA	Weibull	6.07 x 10 ⁻⁶	>10 ⁻⁵	0.45	0.45	0.053	0.057
Valproic acid	Weibull	4.71 x 10 ⁻⁶	>10 ⁻⁵	0.16	0.30	0.021	
Clomiphene	Logit	5.72 x 10 ⁻⁶	>10 ⁻⁵	0.19		0.026	
Theophylline	Logit	5.04 x 10 ⁻⁵	10 ⁻⁵		0.05	0.002	2.21x10 ⁻⁵
BPS	Weibull	1.72 x 10 ⁻⁵	10 ⁻⁴			0.355	0.302
Chlordecone	Logit	1.66 x 10 ⁻⁵	10 ⁻⁴			0.243	0.277
Imazalil	Logit	9.19 x 10 ⁻⁶	10 ⁻⁴			0.275	0.337
Bitertanol	Logit	1.30 x 10 ⁻⁵	10 ⁻⁵				0.003
Prochloraz	Logit	2.23 x 10 ⁻⁷	10 ⁻⁵				0.001
Propiconazole	Logit	5.18 x 10 ⁻⁶	10 -5				0.023

prochloraz > ketoconazole > valproic acid> propiconazole > clomiphene > BPA >
imazalil > bitertanol > chlordecone > BPS > theophylline

Modélisation mathématique pour chaque composé

Model	Function		Inverse ^a
Logit	$f(x) = \frac{1}{(1 + \exp[-\eta])}$	$x = POW\left(\frac{\log_e(K) - \hat{\beta}_1}{\hat{\beta}_2}\right)$	with $K = \left(\frac{Y}{1 - Y}\right)$
Weibull	$f(x) = 1 - \exp(-\exp[\eta])$	$x = POW\left(\frac{\log_e(K) - \hat{\beta}_1}{\hat{\beta}_2}\right)$	with $K = -\log_e(1 - Y)$
Generalized Logit I	$f(x) = \frac{1}{(1 + \exp[-\eta])^{\beta_3}}$	$x = POW\left(\frac{-\log_e(K) - \hat{\beta}_1}{\hat{\beta}_2}\right)$	with $K = \left(\frac{1}{Y}\right)^{1/\beta_3} - 1$
Generalized Logit II	$f(x) = 1 - \frac{1}{(1 + \exp[\eta])^{\beta_3}}$	$x = POW\left(\frac{\log_e(K) - \hat{\beta}_1}{\hat{\beta}_2}\right)$	with $K = \left(\frac{1}{1-Y}\right)^{1/\beta_3} - 1$

