ELFES: Étude longitudinale à radiofréquences et problèmes du sommeil chez les enfants

Mònica Guxens, MD MPH PhD
Associate Research Professor – Miguel Servet Research Fellow
Background

- Major evolutions in mobile communications/connected technologies, devices, and uses → very rapid uptake of these particularly in children and adolescents

- Children and adolescents are at higher risk of RF-EMF exposure, although little is known about their real exposure

- Also, they are potentially more vulnerable to any potential harmful effects of RF-EMF exposure
Why study sleep?

• Crucial for the health and development of children and adolescents → restoration, energy conservation, brain processing and memory consolidation

• Inadequate sleep duration or quality leads to adverse physical and mental health

• 20-40% adolescents have insufficient sleep duration and daytime sleepiness
Why is modern life affecting our sleep patterns?

Artificial light
19th century

Sunset no longer meant the end of the day

Social life in later hours - Later bedtimes

Blue light
21st century

Less and poor sleep

Public health concern
Potential mechanisms

Displacement of the time for sleep

Mental arousal increase

Blue light from screens

Radiofrequency electromagnetic fields exposure

Sleep impairments
Objectives

To investigate the association between RF-EMF exposure and sleep in preadolescents

1. Cross-sectional association between all-day brain RF-EMF doses and sleep disturbances

2. Cross-sectional association between all-day brain RF-EMF doses and physiological sleep measures

3. Longitudinal association between evening brain RF-EMF doses and physiological sleep measures
Design and study population

• Spanish INMA Project (Sabadell, Gipuzkoa)
• Dutch Generation R Study

• Main sample N=1,599
 • INMA and Generation R
 • All-day RF-EMF brain exposure
 • Sleep disturbances and physiological sleep measures

• Sub-study sample N=335
 • INMA
 • Evening RF-EMF brain exposure
 • Physiological sleep measures
RF-EMF exposure assessment

Phone calls
(mobile phone and DECT phone)

Screen activities
(mobile phone, tablet while wirelessly connected to internet, laptop while wirelessly connected to internet)

Far-field
(microenvironments (home, school, commuting, outdoors) & frequency bands (FM, TV, downlink, uplink, DECT, WiFi))

Maternal-reported questionnaire + Daily diary 7-days

3D geospatial radio wave propagation model NISMap and personal measurements ExpoM
All-day and evening brain RF-EMF dose

Source-specific all-day whole brain RF-EMF dose \((mJ/kg/day)_{\text{source}} = \)

\[
\left(\frac{\text{SAR} \left(\frac{W}{kg} \right)_{\text{source}}}{\text{normalized output power} \times 1W} \times \text{Output power} (W)_{\text{source}} \times \text{Duration} \left(\frac{\text{min}}{\text{day}} \right)_{\text{source}} \right)
\]

Source-specific evening whole-brain RF-EMF dose \((mJ/kg/day)_{\text{source, day}} = \)

\[
\left(\frac{\text{SAR} \left(\frac{W}{kg} \right)_{\text{source}}}{\text{normalized output power} \times 1W} \times \text{Output power} (W)_{\text{source}} \times \text{Duration} \left(\frac{\text{min}}{\text{evening}} \right)_{\text{source, day}} \right)
\]

→ For each specific source and overall
Parental-reported sleep disturbances

Sleep Disturbance Scale for Children (SDSC)

- Problems of initiating and maintaining sleep
- Sleep arousal problems
- Excessive somnolence
Physiological sleep measures

GeneActiv

Placed on wrist for 7 nights

Total sleep time (min) Sleep efficiency (%) Wake After Sleep Onset (min) Sleep onset latency

→ 7-days average and daily repeated measures
Population characteristics

<table>
<thead>
<tr>
<th>Maternal characteristics</th>
<th>Study sample<sup>a</sup></th>
<th>Sub-study sample<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 1599)</td>
<td>(n = 335)</td>
</tr>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>56.8</td>
<td>42.8</td>
</tr>
<tr>
<td>Medium</td>
<td>35.8</td>
<td>35.9</td>
</tr>
<tr>
<td>Low</td>
<td>7.4</td>
<td>21.2</td>
</tr>
<tr>
<td>Maternal country of birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(country of the cohort vs. others)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88.1</td>
<td>96.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preadolescents’ characteristics</th>
<th>Study sample<sup>a</sup></th>
<th>Sub-study sample<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (female vs. male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.0</td>
<td>52.2</td>
</tr>
<tr>
<td>Age, in years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2 (0.7)</td>
<td>10.9 (0.5)</td>
</tr>
<tr>
<td>Self-perceived general health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>33.6</td>
<td>21.0</td>
</tr>
<tr>
<td>Very Good</td>
<td>44.3</td>
<td>53.7</td>
</tr>
<tr>
<td>Good/bad/very bad</td>
<td>22.1</td>
<td>25.2</td>
</tr>
<tr>
<td>Body mass index, in kg/m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.9 (3.0)</td>
<td>19.5 (3.8)</td>
</tr>
<tr>
<td>Television viewing per day, in min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90.5 (68.3)</td>
<td>84.0 (68.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preadolescents’ habits after 7 p.m.<sup>c</sup></th>
<th>Study sample<sup>a</sup></th>
<th>Sub-study sample<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>How many minutes do you play console/computer games?</td>
<td>–</td>
<td>20.7 (30.3)</td>
</tr>
<tr>
<td>How many minutes do you watch television?</td>
<td>–</td>
<td>65.7 (57.2)</td>
</tr>
<tr>
<td>Do you intake caffeinated drinks? (yes vs. no)</td>
<td>–</td>
<td>23.3</td>
</tr>
<tr>
<td>Do you sleep alone in your bedroom? (yes vs. no)</td>
<td>–</td>
<td>63.2</td>
</tr>
</tbody>
</table>
All-day and evening brain RF-EMF doses in preadolescents

<table>
<thead>
<tr>
<th></th>
<th>All-day dose (mJ/kg/day) (n = 1599)</th>
<th>Evening dose (mJ/kg/ evening) (n = 335)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Overall dose</td>
<td>166 (700)</td>
<td>60 (20; 118)</td>
</tr>
<tr>
<td>Source-specific doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone calls</td>
<td>129 (692)</td>
<td>21 (2; 72)</td>
</tr>
<tr>
<td>Screen activities</td>
<td>2 (2)</td>
<td>2 (1; 3)</td>
</tr>
<tr>
<td>Far-field sources</td>
<td>35 (82)</td>
<td>11 (7; 25)</td>
</tr>
</tbody>
</table>
Sleep in preadolescents

<table>
<thead>
<tr>
<th></th>
<th>Study sample (n = 1599)</th>
<th>Sub-study sample (n = 335)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep disturbances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problems with initiating and maintaining sleep(^a)</td>
<td>4.3 (3.4)</td>
<td>–</td>
</tr>
<tr>
<td>Excessive somnolence(^b)</td>
<td>2.7 (2.3)</td>
<td>–</td>
</tr>
<tr>
<td>Arousal problems (yes vs. no)</td>
<td>26.5</td>
<td>–</td>
</tr>
<tr>
<td>Objective sleep measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sleep time (hours)</td>
<td>7.6 (0.7)</td>
<td>7.4 (0.8)</td>
</tr>
<tr>
<td>Sleep efficiency (%)</td>
<td>84.2 (4.4)</td>
<td>84.9 (4.3)</td>
</tr>
<tr>
<td>Sleep onset latency (min)</td>
<td>39.2 (39.1)</td>
<td>13.1 (13.3)</td>
</tr>
<tr>
<td>Wake after sleep onset (min)</td>
<td>71.4 (30.2)</td>
<td>55.2 (30.1)</td>
</tr>
</tbody>
</table>
All-day brain RF-EMF dose and sleep disturbances – cross-sectional association

<table>
<thead>
<tr>
<th></th>
<th>Problems with initiating and maintaining sleep<sup>d</sup></th>
<th>Excessive somnolence<sup>d</sup></th>
<th>Arousal problems (yes vs. no)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
<td>PR (95% CI)</td>
</tr>
<tr>
<td>Overall dose</td>
<td>0.0 (−0.0; 0.0)</td>
<td>0.0 (−0.0; 0.0)</td>
<td>1.0 (0.9; 1.0)</td>
</tr>
<tr>
<td>Source-specific doses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone calls<sup>a</sup></td>
<td>0.0 (−0.0; 0.0)</td>
<td>0.0 (−0.0; 0.0)</td>
<td>0.9 (0.9; 1.0)</td>
</tr>
<tr>
<td>Screen activities<sup>b</sup></td>
<td>1.6 (−0.3; 3.6)</td>
<td>2.2 (0.1; 4.3)</td>
<td>2.2 (0.1; 68.8)</td>
</tr>
<tr>
<td>Far-field sources<sup>c</sup></td>
<td>0.0 (−0.0; 0.1)</td>
<td>−0.0 (−0.1; 0.1)</td>
<td>1.0 (0.9; 1.1)</td>
</tr>
</tbody>
</table>
All-day brain RF-EMF dose and physiological sleep measures – cross-sectional association

<table>
<thead>
<tr>
<th></th>
<th>Total sleep time (min)</th>
<th>Sleep efficiency (%)</th>
<th>Wake After Sleep Onset (min)</th>
<th>Sleep onset latency c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
</tr>
<tr>
<td>Overall dose</td>
<td>0.0 (-0.4; 0.5)</td>
<td>-0.0 (-0.1; 0.0)</td>
<td>-0.0 (-0.3; 0.2)</td>
<td>0.0 (-0.0; 0.0)</td>
</tr>
<tr>
<td>Source-specific doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone calls b</td>
<td>0.0 (-0.4; 0.4)</td>
<td>-0.0 (-0.1; 0.0)</td>
<td>-0.0 (-0.3; 0.2)</td>
<td>0.0 (-0.0; 0.0)</td>
</tr>
<tr>
<td>Screen activities b</td>
<td>-30.7 (-162.3; 100.9)</td>
<td>10.3 (-3.5; 24.2)</td>
<td>-69.9 (-149.7; 10.0)</td>
<td>-0.5 (-8.1; 7.1)</td>
</tr>
<tr>
<td>Far-field sources a</td>
<td>0.1 (-3.6; 3.7)</td>
<td>0.2 (-0.2; 0.5)</td>
<td>-0.3 (-2.5; 1.8)</td>
<td>0.3 (0.1; 0.5)</td>
</tr>
</tbody>
</table>
Evening brain RF-EMF dose and physiological sleep measures – longitudinal association

<table>
<thead>
<tr>
<th>Source-specific doses</th>
<th>Total sleep time (min) B (95% CI)</th>
<th>Sleep efficiency (%) B (95% CI)</th>
<th>Wake After Sleep Onset (min) B (95% CI)</th>
<th>Sleep onset latency B (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall dose (Δ100 mJ/kg/evening)</td>
<td>-0.1 (-0.2; 0.1)</td>
<td>0.0 (-0.0; 0.0)</td>
<td>-0.2 (-0.4; 0.1)</td>
<td>-0.0 (0.0; 0.0)</td>
</tr>
<tr>
<td>Source-specific doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null (0 mJ/kg/evening)</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Low (0–2.3 mJ/kg/evening)</td>
<td>-6.2 (-14.8; 2.4)</td>
<td>0.2 (-0.8; 1.1)</td>
<td>0.4 (-6.5; 7.3)</td>
<td>0.0 (-0.3; 0.3)</td>
</tr>
<tr>
<td>High (>2.3 mJ/kg/evening)</td>
<td>-11.9 (-21.2; -2.5)*</td>
<td>-0.3 (-1.3; 0.7)</td>
<td>-0.3 (-7.4; 6.8)</td>
<td>0.3 (0.0; 0.7)</td>
</tr>
<tr>
<td>Screen activities (Δ100 mJ/kg/evening)</td>
<td>-11.8 (-32.5; 9.0)</td>
<td>-0.5 (-1.8; 0.8)</td>
<td>8.4 (-2.1; 18.8)*</td>
<td>0.1 (-0.4; 0.6)</td>
</tr>
</tbody>
</table>
Conclusion

• All-day brain RF-EMF doses were not associated with sleep disturbances or physiological sleep measures

• Evening brain RF-EMF dose from phone calls was related to shorter total sleep time

• Evening might be a potentially relevant window of RF-EMF exposure for sleep → results should be interpreted with caution (first study, small sample size, small effect estimates)

www.projectgoliat.eu
Estimated all-day and evening whole-brain radiofrequency electromagnetic fields doses, and sleep in preadolescents

Alba Cabré-Riera a,b,c, Luuk van Wel d, Ilaria Liorni e, M. Elisabeth Koopman-Verhoeff f,o, Liher Imaz c,h,i, Jesús Ibarluzea c,h,i,j, Anke Huss d, Joe Wiart k, Roel Vermeulen d, Wout Joseph g, Myles Capstick e, Martine Vrijheid a,b,c, Elisabeth Cardis a,b,c, Martin Röösli l,m, Marloes Eeftens l,m, Arno Thielens g, Henning Tiemeier f,n, Mónica Guxens a,b,c,f,*
Thank you!

monica.guxens@isglobal.org
@m_guxens

www.isglobal.org