

SCIENTIFIC MEETING

International Agency for Research on Cancer World Health

Organization

Radiofrequencies and health:

research in a fast-moving environment

#RadiofrequencesRS

23rd November 2022 Espace Diderot - Paris

Challenges and changes in RF-**EMF** exposure measurements

Wout Joseph (wout.joseph@ugent.be), Sam Aerts, Kenneth Deprez, Leen Verloock, Luc Martens

Ghent University UGent-WAVES

Wednesday 23rd November 2022 • Espace Diderot - Paris 12

#RadiofrequencesRS

HUMAN EXPOSURE BY ELECTROMAGNETIC RADIATION

- People worried about health effects electromagnetic radiation
 - Correct information important
 - · Regional procedures and norms Flanders, Brussels,
 - 5G
- Wireless IoT and 5G emerging technologies: more devices radiating, more discussions
 - WHO, IARC
 - ICNIRP 2020 norms, IEEE 2019
 - Horizon Europe, ANSES
 -

GHENT

CONFIDENTIAL - INTERNAL USE

3

່ເກາຍc

CONTENT

- Context & Objective
- Exposure: 2010 4G → now 5G
- 3 measurement methods for in-situ exposure
- In-situ measurements: new applications
 - 5G-NR macro cells
 - 5G-NR small cells
- Discussion & Conclusions

່ເກາຍເ

CONTEXT & OBJECTIVE

Challenges: Fifth generation (5G) of wireless communications technologies

- → Massive multiple-input-multiple-output (MaMIMO)
 → Dynamic beamforming and Adaptive Antenna Systems AAS
- \rightarrow 5G small cells
- → Uncertain impact on our everyday exposure to radiofrequency (RF) electromagnetic fields (EMF)

Objective:

- 4G versus 5G exposure
- Experimental methods for 5G NR base station exposure
- EMF exposure levels 5G macro and 5G small cells
 - Exposures of users and non-users

umec

5

Source: dr. ir. S. Aerts

CONTENT

- Context & Objective
- Exposure: 2010 4G → now 5G
- 3 measurement methods for in-situ exposure
- In-situ measurements: new applications
 - 5G-NR macro cells
 - 5G-NR small cells
- Discussion & Conclusions

່ເກາຍດ

CELLULAR NETWORK EVOLUTION

umec

7

5G IS PRESENT

- 5G-NR (New Radio)
 - Massive amount antennas in base stations MaMIMO
 - Small cells
 - mm-wave technology
- Exposure assessment of 5G

SMALL CELLS

MAMIMO: 4G VERSUS 5G

EXPOSURE ASSESMENT DIFFERENCES 4G AND 5G

- 4G
 - Any user or non-user in a cell around a base station is exposed all the time
 - Exposure is dependent on
 - Gain of the antenna pattern towards the user
 - Distance from the antenna
 - Global network traffic of all users
- 5G
 - Only user is exposed and also non-users exposed near users in first 5G networks
 - Exposure is present only during the use by the user
 - Multiple users can be served at the same time (power will be divided over the users)

- So exposure in the cell will be dependent on

- The number of active users
- The traffic of a user at a specific location

10

11/22/2022

CONTENT

- Context & Objective
- Exposure: 2010 4G → now 5G
- 3 measurement methods for in-situ exposure
- In-situ measurements: new applications
 - 5G-NR macro cells
 - 5G-NR small cells
- Discussion & Conclusions

່ເກາec

11

METHOD I: SPOT SPECTRAL MEASUREMENTS MEASUREMENT SETUP

П

Rohde & Schwarz FSV-30 spectrum analyzer

Narda SRM-3006 field strength analyzer

TOWARDS 5G \rightarrow 5G user equipment (**UE**) needed

> Using iperf app: beam carrying maximum downlink traffic forced toward the UE (and probe)

12

Positioned on the line probe – beam steering base station

່ເກາຍເ

METHOD I: 5G-NR BASE STATION MEASUREMENT PROCEDURE MAXIMUM THEORETICAL EXPOSURE LEVEL

- $E_{MAX} = \underline{\text{maximum}}$ theoretical electric-field strength = case where all subcarriers (N_{sub}) are transmitted at the same time with the same, maximum possible power per RE)
 - Based on the measurement of received power P_{RE,SSB} per RE of the (dominant) SSB
 - $P_{RE,SSB} => E_{RE,SSB}$ (conversion depends on measurement equipment)

INSTANTANEOUS TIME-AVERAGED EXPOSURE LEVEL

- E_{AVG} = instantaneous time-averaged field strength = case as is
- Can be measured directly with spectrum analyser SA setup

່ເກາec

13

METHOD 1: 5G-NR BASE STATION MEASUREMENT PROCEDURE 5-STEP PROCEDURE FOR NR FIELD TESTS **PART IEC STANDARD 62322**

Step I Spectrum overview to identify NR channel

Step 2 In-band measurement of the NR channel to locate NR broadcast signal

Step 3 Measurement of the electric-field level per resource element of the NR broadcast signal and/or the downlink traffic signals

> Step 5 Extrapolation to maximum electric-field level

Step 4 Measurement of the average, instantaneous electric-field level of the NR channel

S.Aerts *et al.*, "In-situ measurement methodology for the assessment of 5G NR massive MIMO base station exposure at sub-6 GHz frequencies," *IEEE Access*, vol. 7, pp. 184658–184667, 2019, doi: 10.1109/ACCESS.2019.2961225.

່ເກາຍເ

METHOD 2: MONITORING NETWORK - TEMPORAL VARIATIONS

- Design of fixed and mobile low-cost RF EMF sensors
- Deployment of an RF EMF exposure sensing network

0.1

0.0

METHOD 3: PERSONAL EXPOSURE MEASUREMENTS MEASUREMENT SETUP

• Depends on location on body: large measurement uncertainty

17

່ເກາຍເ

17

່ເກາec

M. Velghe, S. Aerts, L. Martens, W. Joseph, A. Thielens,

"Protocol for Personal RF-EMF Exposure Measurement Studies¹⁸ in 5th Generation Telecommunication Networks", Environmental Health, 2021

11/22/2022

CONTENT

- Context & Objective
- Exposure: 2010 4G → now 5G
- 3 measurement methods for in-situ exposure
- In-situ measurements: new applications
 - 5G-NR macro cells
 - 5G-NR small cells
- Discussion & Conclusions

່ເກາຍເ

19

19

IN-SITU MEASUREMENTS: MACRO CELLS COMMERCIAL NR NETWORK

- Swisscom network
 - Four NR MaMIMO base station sites (8-port CSI-RS)
 - Antenna input powers P_{in} 1.6 to 8.1 W (32.1–39.1 dBm)
 - I Much lower than BS radio product's maximum input power of 200 W
 - Due to restrictive EMF limits in Switzerland
 - Beamsteering, so user device needed to "attract" traffic beam

21

umec

21

IN-SITU MEASUREMENTS

IMPACT OF COMMERCIAL NR NETWORK ON RF-EMF EXPOSURE

From Step-1 overview measurement, wireless telecommunication signals at:

25

- 800 MHz
- 900 MHz
- I 800 MHz
- 2100 MHz
- 2600 MHz
- 3500 MHz
- Additional measurements with SRM to put in perspective impact of 5G NR commercial Network on the environmental RF-EMF exposure

່ເກາຍດ

IN-SITU MEASUREMENTS

IMPACT OF COMMERCIAL NR NETWORK ON RF-EMF EXPOSURE

IN-SITU MEASUREMENTS

IMPACT OF COMMERCIAL NR NETWORK ON RF-EMF EXPOSURE

Telecom frequency band	E _{avg, max} [V/m]
800 MHz	0.93
900 MHz (2G)	0.17
900 MHz (3G)	0.67
1800 MHz	0.62
2100 MHz	0.42
2600 MHz	0.22
3500 MHz [with UE]	0.41
Cumulative	(1.33)

→ Very limited impact of the commercial NR network on environmental RF-EMF exposure "

Other bands than NR: measured as is, without additional, self-induced traffic

umec

IN-SITU MEASUREMENTS

- *E*_{avg} and *E*_{max} scaled to BS radio product's maximum input power of 200 W
- Maximum exposure level: 4.81 V/m (0.62% of ICNIRP reference level)

	min	max	P ₅₀	P ₉₅
E _{avg} without traffic [V/m]	n/a	0.53	0.05	0.37
E _{avg} with 100% downlink [V /m]	0.13	4.25	1.63	3.94
E _{max} [V/m]	0.26	4.81	1.89	4.41

> Possibly larger impact on environmental exposure, though E_{avg} of ~0.5 V/m (without traffic) would still result in limited contribution to environmental exposure (see previous slide)

RESULTS IMPACT OF COMMERCIAL NR NETWORK ON RF-EMF EXPOSURE

28

29

- Additional measurements with SRM of all telecommunications signals present
- Limited contribution of 5G NR network, especially for non-users, compared to any of the other telecommunications networks

່ເກາຍເ

11/22/2022

CONTENT

- Context & Objective
- Exposure: 2010 4G → now 5G
- 3 measurement methods for in-situ exposure
- In-situ measurements: new applications
 - 5G-NR macro cells
 - 5G-NR small cells
- Discussion & Conclusions

່ເກາຍເ

30

30

IN-SITU MEASUREMENTS: **SMALL CELLS** 5G NR SMALL CELLS

- 5G "small cells" Belgium
 - Site I : Base station radio:
 - Frequency band: 3.75-3.80 GHz (→ channel bandwidth of 50 MHz)
 - MaMIMO with 64T64R (beamforming); Height: ~5.5 m
 - Site 2 Base station radio:
 - Frequency band: 3.41-3.45 GHz (→ channel bandwidth of 40 MHz)
 - 4T2R antenna (no beamforming); Height: ~4.5 m

່ເກາຍເ

32

DISCUSSION

RESULTS SCALED

- To EIRP 50 dBm (= 100 W) ('E100' classification in EU legislation)
 - Cut-off distance between general public and occupational exposures: I m distance [1]
 - For Advanced Antenna Systems (AAS): maximum transmit power of 30 dBm (= | W) [1]

32

- To realistic use case
 - Video call
- For non-users
 - <u>Without</u> other users: based on *E_{avg,min}* without active UE
 - With other users: based on *E_{avg,max}* with active UE maximizing downlink traffic load, multiplied by spatiotemporal duty cycle to take into account distribution of users and usage in time and space [2]

33

S. Forge et al., "Light Deployment Regime for Small-Area Wireless Access Points (SAWAPs)", A study prepared for the European Commission, 2018.
 S. Shikhantsov et al., "Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of SG Massive MIMO in an Outdoor Urban Environment," Appl. Sci. vol. 10, p. 763, 2019.

່ເກາec

RESULTS: USERS VS. NON-USERS

Category	General public		
	AAS	Micro cell	
Theoretical maximum	13.1 (4.6%)	50.8 (68%)	
Realistic maximum			
Single user with base station at maximized downlink traffic capacity.	12.8 (4.4%)	36.6 (36%)	
Typical usor			
Single user performing video call.	4.2 (0.47%)	15.5 (6.4%)	
Non-user <u>without</u> other users	2.4 (0.15%)	5.0 (0.66%)	
Non-user with (many) other users			
Based on realistic maximum exposure	5.7 (0.86%)	35.9 (34%)	
and spatiotemporal duty cycle.			

DISCUSSION & CONCLUSIONS

- Assessment of RF-EMF exposure to 5G NR base stations: 5G device needed!
 - Macro cells in commercial network in Switzerland; small cells in Belgium
 - User device in same beam or other beam than measurement device
- Macro cells
 - USER and USER DEVICE!! Assessment of E_{max} through extrapolation
 - Feasible to extrapolate to E_{max} without knowledge of the antenna radiation patterns
 - When scaled to max input powers of 200 W
 - All field levels still well below ICNIRP reference level (maximum ratio: 0.62%)
 - Impact remains limited when traffic is limited
- Small cells

- Typical exposures: user (average and max), typical user, non-user w and w/o other users
 5G AAS is more efficient: lower for non-user is possible than microcell
 - Results scaled to small-cell powers
 - + Results interpolated to real use case (video call); values below ICNIRP/FCC reference levels

36

37

- Future Work: 4 EU projects!!
 - Mm-waves (f > 24 GHz), FR2 bands
 - Advanced MaMIMO techniques for Adaptive Antenna Systems AAS
 - IEC and CENELEC standardization

umec

36

ACKNOWLEDGMENTS

- Sam Aerts, Kenneth Deprez, Leen Verloock
- Davide Colombi, Christer Törnevik
- Peter Fritschi, Hugo Lehmann, Erwin Muelhauser
- Matthias Van den Bossche
- Pung Tran, PhD and Robert G. Olsen, PhD, Prof.