

healthy all life long

DEVELOPMENT OF A BIOINFORMATICS PIPELINE FOR ROUTINE ANALYSIS OF WHOLE GENOME SEQUENCING DATA OF ESCHERICHIA COLISOLATES

Bert Bogaerts^{1,3}, Stéphanie Nouws^{1,3}, Raf Winand¹, Qiang Fu¹, Julien Van Braekel¹, Sarah Denayer², Bavo Verhaegen², Sigrid C. J. De Keersmaecker¹, Nancy Roosens¹, Kathleen Marchal³ and Kevin Vanneste¹ 1) Transversal activities in applied genomics, Sciensano, Brussels (1050), Belgium 2) Foodborne pathogens, Sciensano, Brussels (1050), Belgium 3) UGhent – Department of information Technology, IDLab, imec

Abstract

The adaptation of whole genome sequencing (WGS) and bioinformatics for routine molecular typing and pathogen characterization in a public health setting remains problematic, which is partly due to the lack of user-friendly and validated data analysis tools that can be used for routine typing in the National Reference Laboratories (NRLs) and peripheral laboratories. In collaboration with the Belgian NRL for *Escherichia coli*, we developed a pipeline for the routine analysis of *E. coli* isolates that was specifically designed to tackle the aforementioned challenges.

Pipeline architecture

The pipeline uses Illumina WGS data to perform a complete characterization of Escherichia coli isolates. The pipeline first generates basic quality reports before trimming the reads. Afterwards, a set of metrics specifically tailored for the pipeline are evaluated to determine if the data quality is sufficient to run the pipeline. The trimmed reads are then used as input for various analyses: downstream contamination check using Kraken, variant calling and filtering against the O157:H7 str. Sakai reference genome, and de novo assembly using SPAdes. All of the gene detection based assays can be performed by alignment using **blastn** or using a read mapping based approach with SRST2. The pipeline output is provided as either a HTML report or a tabular summary file which can be further analyses in other software.

T Detailed on the rest of the poster

A) Sequence typing

The pipeline performs sequence typing using the MLST scheme and cgMLST from **PubMSLT.org**. Databases are automatically updated weekly. The allele detection is based on **BLAST+** alignment of the de-novo assembly or on read mapping using SRST2 depending on the pipeline setting. The pipeline output is shown below. The detected sequence type is reported at the top, **color codes** are used to indicate the type of hit (see legend on the right).

MLST (Bigsdb, Pasteur); MLST, cgMLST, wgMLST (EnteroBase, Warwick)

Classic MLST (Pasteur)

	Alignment	Туре	HSP/Locus length	% Identity	Allele	Locus
r	<u>view</u>	DNA	450/450	100.00	11	dinB
Hit type	view	DNA	516/516	100.00	72	icdA
Perfect	view	DNA	468/468	100.00	134	pabB
Imperfect identity	view	DNA	450/450	100.00	52	polB
Imperfect short	view	DNA	456/456	100.00	25	putP
Multi-hit	view	DNA	561/561	100.00	145	trpA
No hit	view	DNA	594/594	100.00	18	trpB
	view	DNA	600/600	100.00	2	uidA

Name

root

Bacteria

Color

Download (TSV)

Last updated: 03-09-2018

B) Serotype determination

Serotype determination is based on the detection of gene variants that determine the **H-type** (*fliC*, fllA, flkA, flnA, flmA) and O-type (*wzx, wzy, wzt, wzm*). Detection is based on **BLAST+ alignment** of the de-novo assembly or on read SRST2 using mapping depending on the pipeline setting. A set of decision rules is applied to determine the O-type, H-type and the combined serotype. If one the types cannot be determined it is reported as 'ambiguous'. The database sequences are retrieved from the SerotypeFinder tool provided by DTU, and are automatically updated on a weekly basis.

SerotypeFinder - O-type

Summary

Locus	Length	Coverage	Mismatches	Uncertainty	Depth	Predicted serotype	Accession
wzx_199	1287	98.76	16holes	edge2.0	6.08	O157	AKMA01000036
wzy_201	1185	99.41	7holes	edge0.0	4.62	O157	<u>JH953200</u>

Download (TSV)

Report

Last updated: 03-09-2018

SerotypeFinder - H-type

Locus	Length	Coverage	Mismatches	Uncertainty	Depth	Predicted serotype	Accession
fliC_15	1758	100.00	0	edge1.0	7.71	H7	<u>AF228487</u>

Download (TSV)

Last updated: 03-09-2018

Detected serotype: 0157:H7

C) Contamination check

Last updated: 24-01-2018

Species Percentage

Unclassified

Domain

Phylum

Class

Order

Family

Genus

Species

Expected

D) Variant calling & filtering

Bowtie2 is used to map the trimmed reads to the O157:H7 str. Sakai reference genome (NC_002695.2). Afterwards, samtools mpileup followed by *bcftools call* is used to call variants.

Variants are filtered with a set of in-house developed filters based on read depth, SNP quality, mapping quality, distance between variants and the ACTG frequencies at the variant position.

Filtering

Filter	Variants passed
Depth	64772/67523
SNP quality	63828/64772
Mapping quality	45225/63828

Validation

We will extensively validate the different assays of the pipeline to demonstrate the employed methods are "fit-forpurpose" and provide high-quality results. Our approach will be similar to one employed in a previous pipeline validation for Neisseria meningitides (Bogaerts et al, https://doi.org/10.3389/fmicb.2019.00362). We will evaluate repeatability, reproducibility, accuracy, precision, sensitivity, and specificity of the different bioinformatics assays. The validation strategy will be extended to also include the relatedness between isolates based on the sequence typing output and variant calling assays.

The resulting VCF files can be used to construct phylogenetic trees to determine the relatedness between isolates.

	100		ERR042843
			ERR042797
100		100	 ERR 127039
	81	_	ERR 127038
	100		 S17BD07654
		100	 ERR 127046
			ERR 127037
	100		 ERR048300
			ERR048285

Distance	39216/45225
Z-score	38986/39216

Output files

	Number of variants	VCF file
Unfiltered	67523	Download
Filtered (All positions)	38986	Download

Conclusion and future work

We present a pipeline for the complete characterization of *Escherichia coli* isolates using (Illumina) WGS data. The pipeline performance is currently being characterized by means of a set of performance metrics and definitions that were specifically adapted towards bioinformatics assays, and which evaluate repeatability, reproducibility, accuracy, sensitivity, precision, and specificity. Preliminary results on a representative set of samples demonstrate high performance, indicating the feasibility of using WGS in routine public health settings to replace classically employed pathogen typing and characterization techniques. Similar pipelines can be developed for other pathogens and case studies, making bioinformatics analyses less complex and more time-efficient for both expert and non-expert users.

Sciensano • Contact: Kevin Vanneste - T +32 2 642 50 65 - kevin.vanneste@sciensano.be

