

NGS-based workflow to improve the detection of antimicrobial resistance: from wet-lab to data analysis

Bas Berbers^{1, 2}, Assia Saltykova^{1, 2}, Pieter-Jan Ceyssens³, Cristina Garcia-Graells⁴, Kevin Vanneste¹, Nadine Botteldoorn⁴, Nancy Roosens¹, Kathleen Marchal^{2, 5}, Sigrid C.J. De Keersmaecker¹

1. Transversal activities in Applied Genomics (TAG), Sciensano, Brussels; 2. Department of Information Technology, IDLab, Ghent University, IMEC, Ghent; 3. Human Bacterial Diseases, Sciensano, Brussels; 4. Foodborne Pathogens, Sciensano, Brussels; 5. Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent

AMRseq PhD project:

- AMR on chromosome and/or on plasmids
- Plasmid-mediated transfer AMR genes to bacteria of different origins (Onehealth): public health risk factor
- Currently most AMR testing is done with cultures (MIC) and PCR tests
- These lack flexibility to look for new mutations and identify carrier plasmids
- Alternative needed: NGS approach \rightarrow problem: difficult plasmid reconstruction

Objective 1:

Build a generic NGS workflow for characterization of circulating plasmids (from sample preparation to bioinformatics analysis), based on 3 case studies: GMM, pathogens from food and from human, all important in the public health context

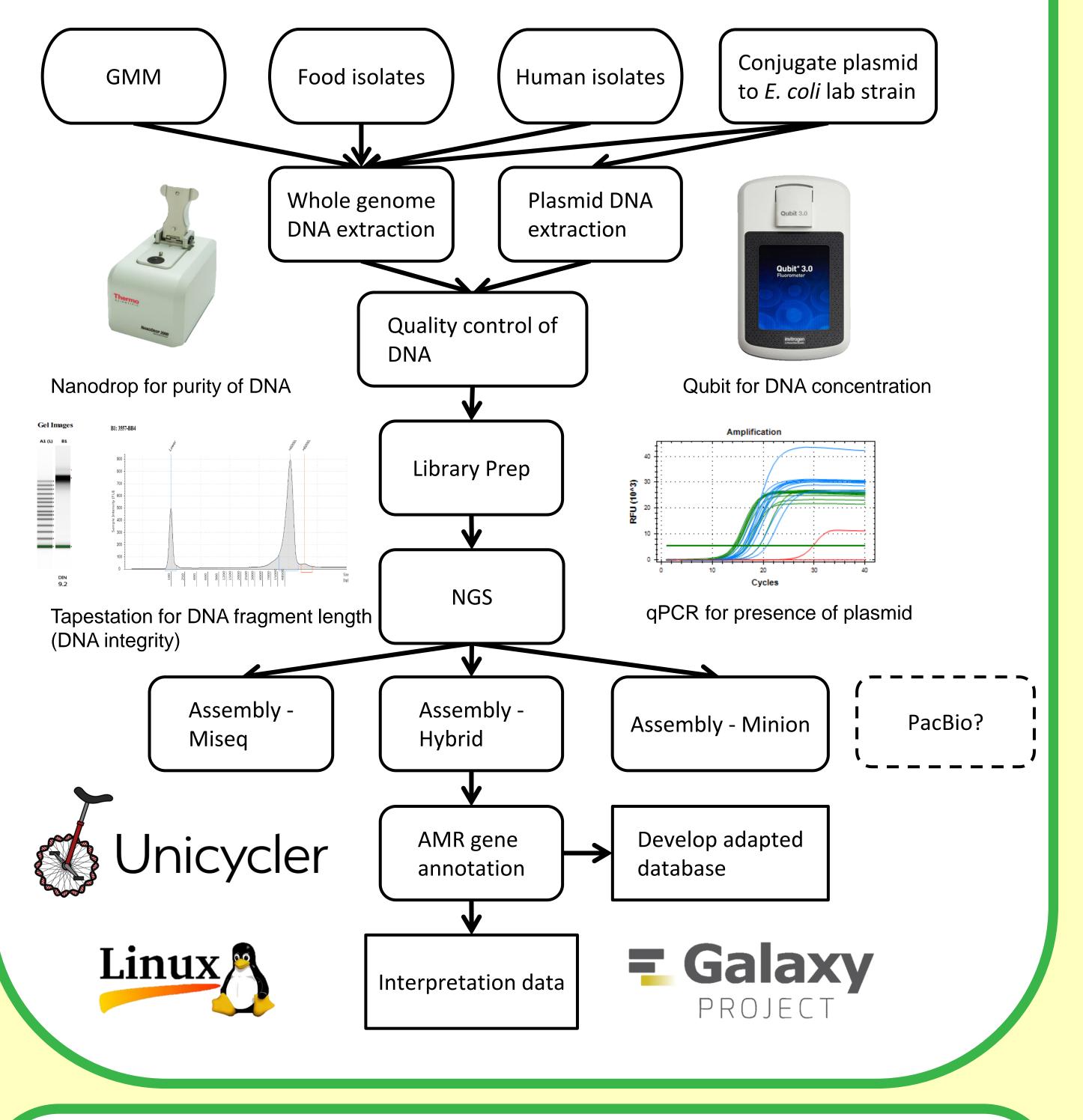
Objective 2:

Develop a database with full circular plasmid sequences including antibiotic resistance profiles and metadata (such as location, host bacteria and type of sample)

NGS strategy for plasmid reconstruction: combining short and long reads

MiSeq:

Short reads (25-250 bp) -

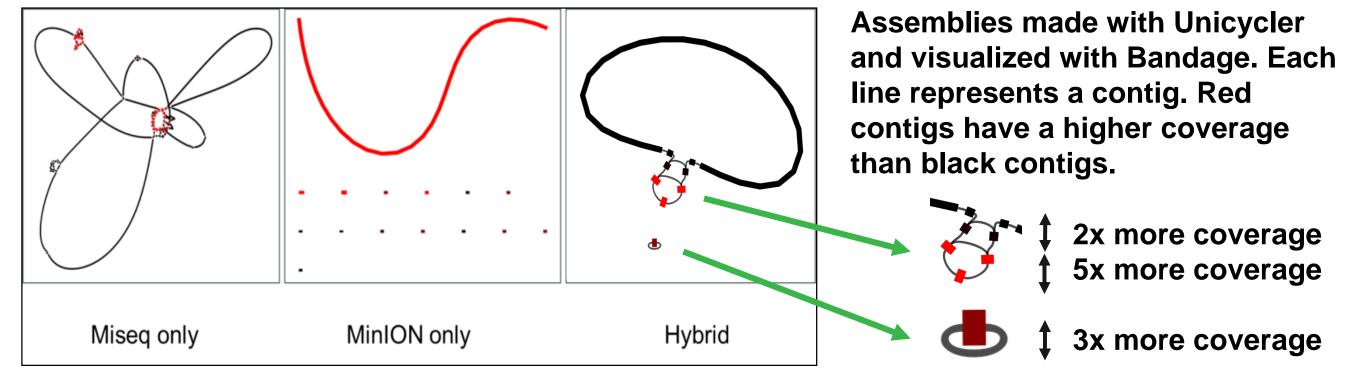

MiSeq

MinION

- Genetically modified *Bacillus subtilis* from feed additive
- Colistin resistant pathogens from human samples
- VIM producing *Enterobacteriaceae* from food

			Conjugation	Conjugation
	Whole genome	Plasmid DNA	plasmid \rightarrow	plasmid \rightarrow
	DNA extraction	extraction	whole genome	plasmid DNA
			DNA extraction	extraction
Wet-lab complexity	*	* * * *	* * *	* * * * *
Dry-lab complexity	****	**	***	*

Complexity of the DNA extraction approaches. * = not complex, while ***** = very complex. Based on initial experiments and literature.


- High accuracy (99.9%)
- Affordable
- + Standardized protocols

MinION:

- Long reads (>8000 bp)
- Low accuracy (75-90%)
- Expensive (~1000 euro for 1 flowcell) -
- Protocols constantly evolving and improving
- Stringent requirements for input DNA

GMM study case

- GM *Bacillus subtilis* overproducing riboflavin (vitamin B2) imported in feed additives (RASFF 2014–1249)
- Approach used: whole genome DNA extraction
- Paired MiSeq reads = not able to span repetitive regions of GM plasmids •
- MinION reads = limited AMR gene detection due to error rate \bullet
- Hybrid assembly with Unicycler:
 - able to identify antimicrobial resistance and reconstruct 3 plasmids To be confirmed with PacBio for integration of plasmid in chromosome

(Hybr	Hybrid assembly (genotype)			Culture-based (phenotype)
AMR gene	AMR class	chromosome	plasmid 1	plasmid 2	plasmid 3	
aadD	Aminoglycoside		Х	Х		X
aadK	Aminoglycoside	Х				X
blaTEM-116	Beta-lactam		Х	Х	Х	Х
cat(pC194)	Phenicol	X				Х
ErmB	Macrolide				X	X
tet(L)	Tetracycline	X			Х	X

Antimicrobial resistance genes and classes found by the genotypic hybrid assembly and by a phenotypic culture-based test.

Sciensano • Rue Juliette Wytsmanstraat 14 •1050 Brussels • Belgium Contact: Bas Berbers• T + 32 : +32 2 642 5359 • bas.berbers@sciensano.be • www.sciensano.be

Conclusions & perspectives

- Not possible to reconstruct repetitive regions of plasmid without long reads, and short reads are necessary to improve the accuracy
- AMR with culture-based test (phenotype) = AMR with NGS (genotype)
- However NGS gives valuable information to facilitate an One Health approach \bullet
- First workflow tested on GM *Bacillus subtilis* and ongoing for other case studies
- Workflow will be applied to bigger collection for construction of plasmid database

